You need to sign in or sign up before continuing. dismiss

Kareem Sorathia

and 7 more

Near the inner edge of the plasma sheet, where the geomagnetic field transitions from dipolar to tail-like, very low values of the northward component of the field (Bz) are known to be occasionally exhibited, particularly in the substorm growth phase. It has been suggested that this may be a signature of a localized magnetic field dip, which are notoriously difficult to observe in situ. The existence of these localized minima is significant as they would be ballooning-interchange (BI) unstable. Previous work has investigated BI instability using localized particle-in-cell simulations with an imposed Bz minimum as an initial condition. However, evidence of the existence of localized Bz minima and BI instability at their tailward edges has been very limited in self-consistent global magnetosphere simulations. In this presentation, we demonstrate that the elusive nature of the instability has been due to the insufficient resolution of previous simulations. We present a highly-resolved global magnetosphere simulation, using our newly developed code Gamera. In a synthetic substorm simulation we demonstrate the formation of a Bz minimum localized in radius, 8-10 Re from Earth. The region becomes BI unstable in the substorm growth phase, leading to the formation of earthward and azimuthally propagating bubbles, distinct from those that form further downtail and become bursty bulk flows. These bubbles generate field-aligned currents and optical auroral signatures, similar to those observed on the ground and from space. We discuss the physical mechanisms for the formation of the localized Bz minimum by magnetic flux depletion, analyze the nature of the instability, characterize both magnetospheric and ionospheric signatures of the unstable region, and compare them with those observed.

Mark J. Engebretson

and 11 more

Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5-10 min duration can induce geomagnetically-induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: A) 0-30 min, B) 30-60 min, and C) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1-2 hour wide 1-3 nT negative minimum at all stations beginning ~30 to 80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre- and post-midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large-scale peaks in ionospheric electrojets. Median SYM/H indices were flat near -30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight.

Mark Engebretson

and 11 more

The rapid changes of magnetic fields associated with nighttime magnetic perturbations with amplitudes |ΔB| of hundreds of nT and 5-10 min periods can induce bursts of geomagnetically-induced currents that can harm technological systems. Recent studies of these events in eastern Arctic Canada, based on data from four ground magnetometer arrays and augmented by observations from auroral imagers and high-altitude spacecraft in the nightside magnetosphere, showed them to be highly localized, with largest |dB/dt| values within a ~275 km half-maximum radius that was associated with a region of shear between upward and downward field-aligned currents, and usually but not always associated with substorms. In this study we look in more detail at the field-aligned currents associated with these events using AMPERE data, and compare the context and characteristics of events not associated with substorms (occurring from 60 min to over two days after the most recent substorm onset) to those occurring within 30 min of onset. Preliminary results of this comparison, based on events with |dB/dt|≥ 6 nT/s observed during 2015 and 2017 at Repulse Bay (75.2° CGMLAT), showed that the SYM/H distributions for both categories of events were similar, with 85% between -40 and 10 nT, and the SME values during non-substorm events coincided with the lower half of the range of SME values for events during substorms (200 – 700 nT). Dipolarizations of ≥ 20 nT amplitude at GOES 13 occurred within 45 minutes prior to 73% of the substorm events but only 29% of the non-substorm events. These observations suggest that predictions of GICs cannot focus solely on the occurrence of intense substorms.