Fan Yang

and 5 more

We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated. Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted into kinetic energy, most of which is converted into internal energy. The calculations for the transfer of kinetic energy among GWs, turbulence, and the BG in a selected region, as well as the contributions from various interactions (BG-GW, BG-turbulence, and GW-turbulence), are performed. At the point where the GW breaks, turbulence is generated. As the GW breaking process proceeds, the GWs lose energy to the background. At the start of the GW breaking, turbulence receives energy through interactions between GWs and turbulence, and between the BG and turbulence. Once the turbulence has accumulated enough energy, it begins to absorb energy from the background while losing energy to the GWs. The probabilities of instability are calculated during various stages of the GW-breaking process. The simulation suggests that the propagation of GWs results in instabilities, which are responsible for the GW breaking. As turbulence grows, it reduces convective instability.
The investigation of atmospheric tsunamigenic acoustic and gravity wave (TAGW) dynamics, from the ocean surface to the thermosphere, is performed through the numerical computations of the 3D compressible nonlinear Navier-Stokes equations. Tsunami propagation is first simulated using a nonlinear shallow water model, which incorporates instantaneous or temporal evolutions of initial tsunami distributions (ITD). Surface dynamics are then imposed as a boundary condition to excite TAGWs into the atmosphere from the ground level. We perform a case study of a large tsunami associated with the 2011 M9.1 Tohuku-Oki earthquake, and parametric studies with simplified and demonstrative bathymetry and ITD. Our results demonstrate that TAGW propagation, controlled by the atmospheric state, can evolve nonlinearly and lead to wave self-acceleration effects and instabilities, followed by the excitation of secondary acoustic-gravity waves (SAGWs), spanning a broad frequency range. The variations of the ocean depth result in a change of tsunami characteristics and subsequent tilt of the TAGW packet, as the wave’s intrinsic frequency spectrum is varied. In addition, focusing of tsunamis and their interactions with seamounts and islands may result in localized enhancements of TAGWs, which further indicates the crucial role of bathymetry variations. Along with SAGWs, leading long-period phases of the TAGW packet propagate ahead of the tsunami wavefront and thus can be observed prior to the tsunami arrival. Our modeling results suggest that TAGWs from large tsunamis can drive detectable and quantifiable perturbations in the upper atmosphere under a wide range of scenarios, and uncover new challenges and opportunities for their observations.