Hari S Viswanathan

and 10 more

Quantitative prediction of natural and induced phenomena in fractured rock is one of the great challenges in the Earth and Energy Sciences with far-reaching economic and environmental impacts. Fractures occupy a very small volume of a subsurface formation but often dominate flow, transport and mechanical deformation behavior. They play a central role in CO2 sequestration, nuclear waste disposal, hydrogen storage, geothermal energy production, nuclear nonproliferation, and hydrocarbon extraction. These applications require prediction of fracture-dependent quantities of interest such as CO2 leakage rate, hydrocarbon production, radionuclide plume migration, and seismicity; to be useful, these predictions must account for uncertainty inherent in subsurface systems. Here, we review recent advances in fractured rock research that cover field- and laboratory-scale experimentation, numerical simulations, and uncertainty quantification. We discuss how these have greatly improved the fundamental understanding of fractures and one’s ability to predict flow and transport in fractured systems. Dedicated field sites provide quantitative measures of fracture flow that can be used to identify dominant coupled processes and to validate models. Laboratory-scale experiments fill critical knowledge gaps by providing direct observations and measurements of fracture geometry and flow under controlled conditions that cannot be obtained in the field. Physics-based simulation of flow and transport provide a bridge in understanding between controlled simple laboratory experiments and the massively complex field-scale fracture systems. Finally, we review the use of machine learning-based emulators to rapidly investigate different fracture property scenarios and to accelerate physics-based models by orders of magnitude to enable uncertainty quantification and near real-time analysis.

Meng Meng

and 6 more

Measuring hydro-mechanical properties of natural fractures is a prerequisite for optimizing hydraulic stimulation design and well placement. We completed experiments to characterize shear on natural fractures in schist, amphibolite, and rhyolite specimens drilled from EGS Collab Project’s field sites at the Sanford Underground Research Facility (SURF) in South Dakota. A triaxial direct shear method and coupled x-ray imaging were used to perform hydroshearing and mechanical shearing at the site’s in-situ stress conditions. This produced simultaneous measurements of fracture and matrix strength, permeability, stress-dependent aperture, dilation, and friction strength. Our results identified that only a subset of the natural fractures was weak enough for hydroshearing. Generally, hydroshearing increases fracture permeability by a factor of 10 or more and the enhancement is retainable over time. However, the shear slip does not always result in permeability enhancement. High content of phyllosilicates was found to associate with exceptionally weak fractures that also exhibited poor or even negative enhancement after stimulation. Combining our measurements with site data, we can predict that most observable fractures at the two EGS Collab sites do not meet the criteria for hydroshearing before tensile opening. In some cases, the visible fractures are low permeability and as strong as the adjacent rock. To induce hydroshearing before tensile opening, injection must target known weak and favorably oriented fractures with confirmed pre-existing permeability.