Hanaya Okuda

and 2 more

Volcanic glass and its mixture with smectite are commonly observed in shallow parts of subduction zones. As volcanic glass layers often act as a glide plane to induce mass transportation such as submarine landslides, and because its alteration product, smectite, is one of the frictionally weakest geological materials, the frictional characteristics of volcanic glass-smectite mixtures are important for fault slip behavior in shallow parts of subduction zones. We performed a series of friction experiments on volcanic glass-smectite mixtures with different smectite contents at various velocity conditions from 10 μm/s to 1 m/s under an effective normal stress of 5 MPa and pore pressure of 10 MPa. In general, friction coefficients negatively depend on the smectite content at any velocity tested. We found that samples with smectite contents of 15-30 % showed a drastic slip-weakening behavior at intermediate velocities of 1-3 mm/s with a characteristic slip displacement of ~0.1 m. Finite element method modeling shows that thermal pressurization does not contribute to the observed weakening behavior. We propose that gouge fluidization or compaction-induced pore pressure increase may be the cause of the weakening. The slip-weakening behavior at intermediate velocities enlarges a critical nucleation length for frictional instability to 1-30 km, or prevent acceleration to seismic slip velocities. Therefore, gouges with minor amount of clay, such as subducting volcanic ash layers, may contribute to the occurrence of the at shallow depths in subduction zones.

Hanaya Okuda

and 4 more

Nucleation of earthquake slip at the plate boundary fault (décollement) in subduction zones has been widely linked to the frictional properties of subducting sedimentary facies. However, recent seismological and geological observations suggest that the décollement develops in the subducting oceanic crust in the depth range of the seismogenic zone, at least in some cases. To understand the frictional properties of oceanic crustal material and their influence on seismogenesis, we performed hydrothermal friction experiments on simulated fault gouges of altered basalt, at temperatures of 100-550 ℃. The friction coefficient (μ) lies around 0.6 at most temperature conditions but a low μ down to 0.3 was observed at the highest temperature and lowest velocity condition. The velocity dependence of μ, a−b, changes with increasing temperature from positive to negative at 100-200 ºC and from negative to positive at 450-500 ºC. Compared to gouges derived from sedimentary facies, the altered basalt gouge showed potentially unstable velocity weakening over a wider temperature range. Microstructural observations and microphysical interpretation infer that competition between dilatant granular flow and viscous compaction through pressure-solution creep of albite contributed to the observed transition in a−b. Alteration of oceanic crust during subduction produces fine grains of albite and chlorite through interactions with interstitial water, leading to reduction in its frictional strength and an increase in its seismogenic potential. Therefore, shear deformation possibly localizes within the altered oceanic crust leading to a larger potential for the nucleation of a megathrust earthquake in the depth range of the seismogenic zone.