High-latitude ionospheric convection is a useful diagnostic of solar wind-magnetosphere interactions and nightside activity in the magnetotail. For decades, the high-latitude convection pattern has been mapped using the Super Dual Auroral Radar Network (SuperDARN), a distribution of ground-based radars which are capable of measuring line-of-sight (l-o-s) ionospheric flows. From the l-o-s measurements an estimate of the global convection can be obtained. As the SuperDARN coverage is not truly global, it is necessary to constrain the maps when the map fitting is performed. The lower latitude boundary of the convection, known as the Heppner-Maynard boundary (HMB), provides one such constraint. In the standard SuperDARN fitting, the HMB location is determined directly from the data, but data gaps can make this challenging. In this study we evaluate if the HMB placement can be improved using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), in particular for active time periods when the HMB moves to latitudes below 55°. We find that the boundary as defined by SuperDARN and AMPERE are not always co-located. SuperDARN performs better when the AMPERE currents are very weak (e.g. during non-active times) and AMPERE can provide a boundary when there is no SuperDARN scatter. Using three geomagnetic storm events, we show that there is agreement between the SuperDARN and AMPERE boundaries but the SuperDARN-derived convection boundary mostly lies ~3° equatorward of the AMPERE-derived boundary. We find that disagreements primarily arise due to geometrical factors and a time lag in expansions and contractions of the patterns.
We examine the average evolution of precipitation-induced height-integrated conductances, along with field-aligned currents, in the nightside sector of the polar cap over the course of a substorm. Conductances are estimated from the average energy flux and mean energies derived from auroral emission data. Data are binned using a superposed epoch analysis on a normalised time grid based on the time between onset and recovery phase ($\delta$t) of each contributing substorm. We also examine conductances using a fixed time binning of width 0.25 hr. We split the data set by magnetic latitude of onset. We find that the highest conductances are observed for substorms with onsets that occur between 63 and 65 degrees magnetic latitude, peaking at around 11 mho (Hall) and 4.8 mho (Pedersen). Substorms with onsets at higher magnetic latitudes show lower conductances and less variability. Changes in conductance over the course of a substorm appear primarily driven by changes (about 40% at onset) in the average energy flux, rather than the average energy of the precipitation. Average energies increase after onset slower than energy flux, later these energies decrease slowly for the lowest latitude onsets. No clear expansion of the main region 1 and region 2 field-aligned currents is observed. However, we do see an ordering of the current magnitudes with magnetic latitude of onset, particularly for region 1 downwards FAC in the morning sector. Peak current magnitudes occur slightly after or before the start of the recovery phase for the normalised and fixed-time grids.