Kaihe Yamazaki

and 5 more

The advent of under-ice profiling float and biologging techniques has enabled year-round observation of the Southern Ocean and its Antarctic margin. These under-ice data are often overlooked in widely used oceanographic datasets, despite their importance in understanding seasonality and its role in sea ice changes, water mass formation, and glacial melt. We develop a monthly climatology of the Southern Ocean (south of 40°S and above 2,000 m) using Data Interpolating Variational Analysis, which excels in multi-dimensional interpolation and consistent handling of topography and horizontal advection. The climatology successfully captures thermohaline variability under sea ice, previously hard to obtain, and outperforms other observation-based products and state estimate simulations in data fidelity, with smaller root-mean-square errors and biases. To demonstrate its multi-purpose capability, we present a qualitative description of the seasonal variation, including 1) the surface mixed layer, 2) the water mass volume census, 3) the Antarctic Slope Front, and 4) shelf bottom waters. Particularly, the circumpolar variation in the extent of dense shelf water and the annual volume overturning rate of water masses are revealed for the first time. The present work offers a new monthly climatology of the Southern Ocean and the Antarctic margin, which will be instrumental in investigating the seasonality and improving ocean models, thereby making valuable winter observations more accessible. We further highlight the quantitative significance of under-ice data in reproducing ocean conditions, advocating for their increased use to achieve a better Southern Ocean observing system.

Asher Riaz

and 3 more

Eddies have two distinct properties known as eddy advection (K_GM ) and eddy diffusion (K_iso). These are parameterized by Gent-McWilliams [1990] (K_GM ) and Redi [1982] (K_iso), respectively, in low to moderate resolution global ocean models. Both processes play an active part in the uptake of tracers such as CO_2 and CFCs. The advective role of eddies is associated with slumping of isopycnals, whereas the diffusive role is associated with the down-gradient diffusion [Lee et al., 2007]. In this work we investigate, for the first-time, which eddy process plays a dominant role in controlling tracer distribution in models. The model (pyOM2) used in this work is a coarse-resolution (2°x 2°) global ocean model [Eden et al., 2014]. We use a suite of nine different experiments, each with different K_GM and K_iso values. An idealised passive tracer is introduced at the surface of the ocean after the model is well equilibrated and it evolves for 100 years. We found on decadal time scales eddy diffusion and eddy advection both play equally important roles in controlling tracer distribution. However, on the time scale of hundred years or more eddy advection dominates over eddy diffusion. Small K_GM values set the isopycnal slopes to be steep, which allows the tracer to easily penetrate the deep ocean along isopycnals. On the contrary, large K_GM values flatten the isopycnals and therefore tracer only weakly penetrates the deep ocean. Near Antarctica, large values of K_iso exert strong control over the tracer distribution and brings tracer rich water to depth.

Maxime Marin

and 3 more

Long-term temperature changes drive coastal Marine Heat Waves (MHW) trends globally. Here, we provide a more comprehensive global analysis of cross-shore gradients of MHW and SST changes using an ensemble of three satellite SST products during recent decades. Our analysis reveals depressed onshore SST trends in more than 2/3 of coastal pixels, including both eastern and western boundary current systems. These were well correlated with depressed trends of MHW exposure and severity, ranging from a -2 to -10 decrease in MHW days per decade and a –2.5 to –15°C.days per decade decrease in cumulative intensity. Results were consistent across all satellite products, indicating that these cross-shore gradients are a robust feature of observations. ERA reanalysis data shows that neither air-sea heat fluxes nor wind driven upwelling were found to be consistent drivers. Global ocean circulation models (OFAM3 and ACCESS-OM2) have limited ability to simulate the depressed onshore trends. A heat budget analysis performed in the Chilean coast region, where models agree with observations, showed that the gradient of temperature change was controlled by an onshore increase of longwave radiative cooling, despite an increase in upwelling. This highlights the complexity of small-scale coastal ocean-atmosphere feedbacks, which coarser resolution climate models do not resolve. Here, we show that global coastal regions may act as thermal refugia for marine ecosystems from aspects of climate change and pulsative (MHW) changes. Contrary to the literature, our results suggest that driving mechanisms are region dependant, stressing the necessity to improve climate models resolution.