Paul A. Jarvis

and 6 more

The mixing and mingling of magmas of different compositions are important geological processes. They produce various distinctive textures and geochemical signals in both plutonic and volcanic rocks and have implications for eruption triggering. Both processes are widely studied, with prior work focusing on field and textural observations, geochemical analysis of samples, theoretical and numerical modelling, and experiments. However, despite the vast amount of existing literature, there remain numerous unresolved questions. In particular, how does the presence of crystals and exsolved volatiles control the dynamics of mixing and mingling? Furthermore, to what extent can this dependence be parameterised through the effect of crystallinity and vesicularity on bulk magma properties such as viscosity and density? In this contribution, we review the state of the art for models of mixing and mingling processes and how they have been informed by field, analytical, experimental and numerical investigations. We then show how analytical observations of mixed and mingled lavas from four volcanoes (Chaos Crags, Lassen Peak, Mt. Unzen and Soufrière Hills) have been used to infer a conceptual model for mixing and mingling dynamics in magma storage regions. Finally, we review recent advances in incorporating multi-phase effects in numerical modelling of mixing and mingling, and highlight the challenges associated with bringing together empirical conceptual models and theoretically-based numerical simulations.

David Schlaphorst

and 21 more

The crust and upper mantle structure of the Greater and Lesser Antilles Arc provides insights into key subduction zone processes in a unique region of slow convergence of old slow-spreading oceanic lithosphere. We use ambient noise tomography gathered from island broadband seismic stations and the temporary ocean bottom seismometer network installed as part of the VoiLA experiment to map crustal and upper mantle shear-wave velocity of the eastern Greater Antilles and the Lesser Antilles Arc. We find sediment thickness, based on the depth to the 2.0 km/s contour in the Grenada and Tobago basins up to 15 km in the south, with thinner sediments near the arc and to the north. We observe thicker crust, based on the depth to the 4.0 km/s velocity contour, beneath the arc platforms with the greatest crustal thickness of around 30 km, likely related to crustal addition from arc volcanism through time. There are distinct low velocity zones (4.2-4.4 km/s) in the mantle wedge (30-50 km depth), beneath the Mona Passage, Guadeloupe-Martinique, and the Grenadines. The Mona passage mantle anomaly may be related to ongoing extension there, while the Guadeloupe-Martinique and Grenadine anomalies are likely related to fluid flux, upwelling, and/or partial melt related to nearby slab features. The location of the Guadeloupe-Martinique anomaly is slightly to the south of the obliquely subducted fracture zones. This feature could be explained by either three-dimensional mantle flow, a gap in the slab, variable slab hydration, and/or melt dynamics including ponding and interactions with the upper plate.
Uturuncu volcano is situated in the Bolivian Andes, directly above the world’s largest crustal body of silicic partial melt, the Altiplano-Puna Magma Body (APMB). Uturuncu last erupted 250,000 years ago, yet is seismically active and lies at the centre of a 70 km diameter uplifted region. Here, we analyse seismicity from 2009 to 2012. Our earthquake locations, using a newly developed velocity model, delineate the top and bottom of the APMB, reveal individual faults, and reconcile differences in depth distribution between previous studies. Spatial clustering analysis of these earthquakes reveals the orientations of the faults, which match stress orientations from seismic anisotropy. Earthquake b-values derived from moment magnitudes (1.4) differ significantly from those using local magnitude measurements (0.8). We suggest that, if possible, moment magnitudes should always be used for accurate b-value analysis. We interpret b-values > 1 in terms of fluid-enhanced seismicity. Shallow seismicity local to Uturuncu yields b-values > 1.1 with some temporal variation, suggesting fluid migration along pre-existing faults in a shallow hydrothermal system, likely driven by advection from the APMB. Intriguingly, events deeper than the APMB also yield large b-values (1.4), mapping the ascent into the lower crust of fluids originating from a subducting slab. Cumulatively, these results provide a picture of an active magmatic system, where fluids are exchanged across the more ductile APMB, feeding a shallow, fault-controlled hydrothermal system. Such pathways of fluid ascent may influence our understanding of arc volcanism, control future volcanic eruptions and promote the accumulation of shallow hydrothermal ore deposits.

Gregor Weber

and 2 more