Extreme runoff modeling is hindered by the lack of sufficient and relevant ground information and the low reliability of physically-based models. The authors propose to combine precipitation Remote Sensing (RS) products, Machine Learning (ML) modeling, and hydrometeorological knowledge to improve extreme runoff modeling. The approach applied to improve the representation of precipitation is the object-based Connected Component Analysis (CCA), a method that enables classifying and associating precipitation with extreme runoff events. Random Forest (RF) is employed as a ML model. We used 2.5 years of nearly-real-time hourly RS precipitation from the PERSIANN-CCS and IMERG-early run databases (spatial resolutions of 0.04 o and 0.1 o , respectively), and runoff at the outlet of a 3391 km 2-basin located in the tropical Andes of Ecuador. The developed models show the ability to simulate extreme runoff for the cases of long-duration precipitation events regardless of the spatial extent, obtaining Nash-Sutcliffe efficiencies (NSE) above 0.72. On the contrary, we found an unacceptable model performance for a combination of short-duration and spatially-extensive precipitation events. The strengths/weaknesses of the developed ML models are attributed to the ability/difficulty to represents complex precipitation-runoff responses.