Buchanan C Kerswell

and 2 more

Bodies of rock that are detached (recovered) from subducting oceanic plates, and exhumed to Earth’s surface, become invaluable records of the mechanical and chemical processing of rock along subduction interfaces. Exposures of interface rocks with high-pressure (HP) mineral assemblages provide insights into the nature of rock recovery, yet various interpretations concerning thermal gradients, recovery rates, and recovery depths arise when directly comparing the rock record with numerical simulations of subduction. Constraining recovery rates and depths from the rock record presents a major challenge because small sample sizes of HP rocks makes statistical inference weak. As an alternative approach, this study implements numerical simulations of oceanic-continental convergence and applies a classification algorithm to identify rock recovery. Over one million markers are classified from 64 simulations representing a large range of subduction zones. We find recovery P’s (depths) correlate strongly with convergence velocity and moderately with oceanic plate age, while PT gradients correlate strongly with oceanic plate age and upper-plate thickness. Recovery rates strongly correlate with upper-plate thickness, yet show no correlation with other boundary conditions. Likewise, PT distributions of recovered markers vary among numerical experiments and generally show poor overlap with the rock record. A significant gap in predicted marker recovery is found near 2 GPa and 550 ˚C, coinciding with the highest density of exhumed HP rocks. Implications for such a gap in marker recovery include numerical modeling uncertainties, petrologic uncertainties, selective sampling of exhumed HP rocks, or natural geodynamic factors not accounted for in numerical experiments.

Buchanan C Kerswell

and 2 more

A key feature of subduction zone geodynamics and thermal structure is the point at which the slab and mantle mechanically couple. This point defines the depth at which traction between slab and mantle begins to drive mantle wedge circulation and also corresponds with a major increase in temperature along the slab-mantle interface. Here we consider the effects of the backarc thermal structure and slab thermal parameter on coupling depth using two-dimensional thermomechanical models of oceanic-continental convergent margins. Coupling depth is strongly correlated with backarc lithospheric thickness, and weakly correlated with slab thermal parameter. Slab-mantle coupling becomes significant where weak, hydrous antigorite reacts to form strong, anhydrous olivine and pyroxene along the slab-mantle interface. Highly efficient (predominantly advective) heat transfer in the asthenospheric mantle wedge and inefficient (predominantly conductive) heat transfer in the lithospheric mantle wedge results in competing feedbacks that stabilize the antigorite-out reaction at depths determined primarily by the mechanical thickness of the backarc lithosphere. For subduction zone segments where backarc lithospheric thickness can be inverted from surface heat flow, our results provide a regression model that can be applied with slab thermal parameter to predict coupling depth. Consistently high backarc heat flow in circum-Pacific subduction zones suggests uniformly thin overriding plates likely regulated by lithospheric erosion caused by hydration and melting processes under volcanic arcs. This may also explain a common depth of slab-mantle coupling globally.