Shahab Fatemi

and 6 more

Magnetosheath jets represent localized enhancements in dynamic pressure observed within the magnetosheath. These energetic entities, carrying excess energy and momentum, can impact the magnetopause and disrupt the magnetosphere. Therefore, they play a vital role in coupling the solar wind and terrestrial magnetosphere. However, our understanding of the morphology and formation of these complex, transient events remains incomplete over two decades after their initial observation. Previous studies have relied on oversimplified assumptions, considering jets as elongated cylinders with dimensions ranging from 0.1RE to 5.0RE (Earth radii). In this study, we present simulation results obtained from Amitis, a high-performance hybrid-kinetic plasma framework (particle ions and fluid electrons) running in parallel on Graphics Processing Units (GPUs) for fast and more environmentally friendly computation compared to CPU-based models. Considering realistic scales, we present the first global, three-dimensional (3D in both configuration and velocity spaces) hybrid-kinetic simulation results of the interaction between solar wind plasma and Earth. Our high-resolution kinetic simulations reveal the 3D structure of magnetosheath jets, showing that jets are far from being simple cylinders. Instead, they exhibit intricate and highly interconnected structures with dynamic 3D characteristics. As they move through the magnetosheath, they wrinkle, fold, merge, and split in complex ways before a subset reaches the magnetopause.

Shahab Fatemi

and 6 more

Magnetosheath jets represent localized enhancements in dynamic pressure observed within the magnetosheath. These energetic entities, carrying excess energy and momentum, can impact the magnetopause and disrupt the magnetosphere. Therefore, they play a vital role in coupling the solar wind and terrestrial magnetosphere. However, our understanding of the morphology and formation of these complex, transient events remains incomplete over two decades after their initial observation. Previous studies have relied on oversimplified assumptions, considering jets as elongated cylinders with dimensions ranging from 0.1 RE to 5.0 RE (Earth radii). In this study, we present simulation results obtained from Amitis, a high-performance hybrid-kinetic plasma framework (particle ions and fluid electrons) running in parallel on Graphics Processing Units (GPUs) for fast and more environmentally friendly computation compared to CPU-based models. Considering realistic scales, we present the first global, three-dimensional (3D in both configuration and velocity spaces) hybrid-kinetic simulation results of the interaction between solar wind plasma and Earth. Our high-resolution kinetic simulations reveal the 3D structure of magnetosheath jets, showing that jets are far from being simple cylinders. Instead, they exhibit intricate and highly interconnected structures with dynamic 3D characteristics. As they move through the magnetosheath, they wrinkle, fold, merge, and split in complex ways before a subset reaches the magnetopause.

Elias Odelstad

and 4 more

We show that an ion-ion cross-field streaming instability between cold newborn cometary ions and heated heavy ions that were picked up upstream is likely a contributing source of observed lower hybrid (LH) waves in the inner coma of comet 67P/Churyumov-Gerasimenko. Electric field oscillations in the LH frequency range are common here, and have previously been attributed mainly to the lower-hybrid drift instability (LHDI), driven by gradients associated with observed local density fluctuations. However, the observed wave activity is not confined to such gradients, nor is it always strongest there. Thus, other instabilities are likely needed as well to explain the observed wave activity. Several previous works have shown the existence of multiple populations of cometary ions in the inner coma of 67P, distinguished by differences in mass, energy and/or flow direction. We here examine two selected time intervals in October and November 2015, with substantial wave activity in the lower hybrid frequency range, where we identify two distinct cometary ion populations: a bulk population of locally produced, predominantly radially outflowing ions, and a more tenuous population picked up further upstream and accelerated back towards the comet by the solar wind electric field. These two populations exhibit strong relative drifts ($\sim$20 km/s, or about 5 times the pickup ion thermal velocity), and we perform an electrostatic dispersion analysis showing that conditions should be favorable for lower hybrid wave generation through the ion-ion cross-field instability.

Andrew P. Dimmock

and 10 more

Mirror modes are ubiquitous in space plasma and grow from pressure anisotropy. Together with other instabilities, they play a fundamental role in constraining the free energy contained in the plasma. This study focuses on mirror modes observed in the solar wind by Solar Orbiter for heliocentric distances between 0.5 and 1 AU. Typically, mirror modes have timescales from several to tens of seconds and are considered quasi-MHD structures. In the solar wind, they also generally appear as isolated structures. However, in certain conditions, prolonged and bursty trains of higher frequency mirror modes are measured, which have been labeled previously as mirror mode storms. At present, only a handful of existing studies have focused on mirror mode storms, meaning that many open questions remain. In this study, Solar Orbiter has been used to investigate several key aspects of mirror mode storms: their dependence on heliocentric distance, association with local plasma properties, temporal/spatial scale, amplitude, and connections with larger-scale solar wind transients. The main results are that mirror mode storms often approach local ion scales and can no longer be treated as quasi-MHD, thus breaking the commonly used long-wavelength assumption. They are typically observed close to current sheets and downstream of interplanetary shocks. The events were observed during slow solar wind speeds and there was a tendency for higher occurrence closer to the Sun. The occurrence is low, so they do not play a fundamental role in regulating ambient solar wind but may play a larger role inside transients.