The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) was launched on February 19, 2017 and began routine operation in June 2017. The first two years of SAGE III/ISS (v5.1) solar ozone data were evaluated by using correlative satellite and ground-based measurements. Among the three (MES, AO3, and MLR) SAGE III/ISS solar ozone products, AO3 ozone shows the best accuracy and precision, with mean biases less than 5% for altitudes ~15–55 km in the mid-latitudes and ~20–55 km in the tropics. In the lower stratosphere and upper troposphere, AO3 ozone shows high biases that increase with decreasing altitudes and reach ~10% near the tropopause. Preliminary studies indicate that those high biases primarily result from the contributions of the oxygen dimer (O) not being appropriately removed within the ozone channel. The precision of AO3 ozone is estimated to be ~3% for altitudes between 20 and 40 km. It degrades to ~10–15% in the lower mesosphere (~55 km), and ~20–30% near the tropopause. There could be an altitude registration error of ~100 meter in the SAGE III/ISS auxiliary temperature and pressure profiles. This, however, does not affect retrieved ozone profiles in native number density on geometric altitude coordinates. In the upper stratosphere and lower mesosphere (~40–55 km) the SAGE III/ISS (and SAGE II) sunset ozone values are systematically higher than sunrise data by ~5–8% which are almost twice larger than what observed by other satellites or model predictions. This feature needs further study.