Understanding mechanical processes occurring on faults requires detailed information on the microseismicity that can be enhanced today by advanced techniques for earthquake detection. This problem is challenging when the seismicity rate is low and most of the earthquakes occur at depth. In this study, we compare three detection techniques, the autocorrelation FAST, the machine learning EQTransformer, and the template matching EQCorrScan, to assess their ability to improve catalogs associated with seismic sequences in the normal fault system of Southern Apennines (Italy) using data from the Irpinia Near Fault Observatory (INFO). We found that the integration of the machine learning and template matching detectors, the former providing templates for the cross-correlation, largely outperforms techniques based on autocorrelation and machine learning alone, featuring an enrichment of the automatic and manual catalogs of factors 21 and 7 respectively. Since output catalogs can be polluted by many false positives, we applied refined event selection based on the cumulative distribution of their similarity level. We can thus clean up the detection lists and analyze final subsets dominated by real events. The magnitude of completeness decreases by more than one unit compared to the reference value for the network. We report b-values associated with sequences smaller than the average, likely corresponding to larger differential stresses than for the background seismicity of the area. For all the analyzed sequences, we found that main events are anticipated by foreshocks, indicating a possible preparation process for mainshocks at sub-kilometric scales.

Matteo Picozzi

and 4 more

We consider approximately 32,000 microearthquakes that occurred between 2005 and 2016 in central Italy to investigate the crustal strength before and after the three largest earthquakes of the 2016 seismic sequence (i.e., the Mw 6.2, 24 August 2016 Amatrice, the Mw 6.1, 26 October 2016 Visso, and the Mw 6.5, 30 October 2016 Norcia earthquakes). We monitor the spatio-temporal deviations of the scaling between the seismic moment, M0, and the radiated energy, ES, with respect to a model calibrated for background seismicity. These deviations, defined here as Energy Index (EI), allow us to identify in the years following the Mw 6.1, 2009 L’Aquila earthquake a progressive evolution of the dynamic properties of the microearthquakes and the existence of high EI patches close to the Amatrice earthquake hypocenter. We show the existence of a crustal volume with high EI even before the Mw 6.5 Norcia earthquake. Our results agree with the suggested hypothesis that the Norcia earthquake nucleated at the boundary of a large patch that was highly stressed by the two previous mainshocks of the sequence. Furthermore, we highlight the mainshocks interaction both in terms of EI and of the mean loading shear stress associated to microearthquakes occurring within the crustal volumes comprising the mainshock hypocenters. Our study shows that the dynamic characteristics of microearthquakes can be exploited as beacons of stress change in the crust, and thus be exploited to monitor the seismic hazard of a region and help to intercept the preparation phase of large earthquakes.

Sahar Nazeri

and 4 more

The moderate earthquake occurred at the volcanic island of Ischia, south-west of Naples (Italy) caused several buildings collapse, two victims, and several tens of injured people. This event generated a large amplitude ground shaking and long-lasting S-wave signal, longer than those expected for an earthquake. To investigate the event rupture complexity and its radiated wave field, we used finite-fault modelling to invert the near-source (< 1 km epicentral distance), three-component velocity records of the accelerometric station (IOCA), and searched for the best-fit kinematic rupture parameters. This analysis showed that the rupture nucleated at about 600 m west of IOCA and 1.1 km depth, along a 1 km, NW-SE striking fault (thrust-strike slip with right-lateral component), with a rupture velocity 0.8 km/s. The retrieved rupture model coupled with multi-path reverberations effects related to a thin, low-velocity near-surface volcanic sedimentary layer, allowed us to explain the observed long ground motion duration and the large amplitudes recorded all over the island. The actual fault location, mechanism, and the spatial correlation between the simulated peak ground motion zone and the area where the maximum vertical displacement has been determined by DInsar images suggest that the latter is associated with strong-shaking locally generated by land-slide phenomena caused by co-seismic slip. Our source model is consistent with the earthquake located near the border of the caldera resurgent block, which is likely still active, where mass rock creeps evolved into widespread collapses at NW of Monte Epomeo.

Dino Bindi

and 6 more

Although the non-uniqueness of the solution is commonly mentioned in the context of studies that perform spectral decompositions to separate source and propagation effects, its impact on the interpretation of the results is often overlooked. The purpose of this study is to raise awareness on this important subject for modelers and users of the models and to evaluate the impact of strategies commonly applied to constrain the solution. In the first part, we study the connection between the source-station geometry of an actual data set and the properties of the design matrix that defines the spectral decomposition. We exemplify the analyses by considering a geometry extracted from the data set prepared for the benchmark Community Stress Drop Validation Study (Baltay et al., 2021). In the second part, we analyze two different strategies followed to constrain the solutions. The first strategy assumes a reference site condition where the average site amplification for a set of stations is constrained to values fixed a-priori. The second strategy consists in correcting the decomposed source spectra for unresolved global propagation effects. Using numerical analysis, we evaluate the impact on source scaling relationships of constraining the corner frequency of magnitude 2 events to 30 Hz when the true scaling deviates from this assumption. We show that the assumption can not only shift the overall seismic moment versus corner frequency scaling but can also affect the source parameters of larger events and modify their spectral shape.