Damien Ringeisen

and 2 more

Most viscous-plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop and parabolic lens yield curves offer an attractive alternative. These yield curves feature a non-symmetrical shape, a Coulombic behavior for the low-medium compressive stress, and a continuous transition to the ridging-dominant mode. We show that the current formulation of the teardrop and parabolic lens viscous-plastic yield curves with normal flow rules results in negative or zero bulk and shear viscosities and, consequently, poor numerical convergence and representation of stress states on or within the yield curve. These issues are mainly linked to the assumption that the constitutive equation applicable to the elliptical yield curve also applies to non-symmetrical yield curves and yield curves with tensile strength. We present a new constitutive relation for the teardrop and parabolic lens yield curves that solves the numerical convergence issues naturally. Results from simple uni-axial loading experiments show that we can reduce the residual norm of the numerical solver with a smaller number of total solver iterations, resulting in significant improvements in numerical efficiency and representation of the stress and deformation field. These yield curves lead to smaller angles of failure, in agreement with theoretical predictions, and are good candidates to replace the elliptical yield curve in high-resolution pan-arctic sea ice simulation.

Marine Decuypere

and 2 more

Juliette Lavoie

and 2 more

In recent years, there has been a significant sea ice retreat in the Pacific sector of the Arctic. One possible cause is the increase in ocean heat flux amplified by the ice-albedo feedback. This paper looks at vertical ocean heat transport from waters of Pacific origin and solar heat into the mixed layer and their impact on the sea ice mass balance in the Community Earth System Model - Large Ensemble (CESM-LE). To this end, we focus on two specific periods with observational hydrographic data from the Arctic Ice Dynamics Joint Experiment (1975-76) and Ice-Tethered Profiler (2004-2018). A comparison between simulated and observed salinity and potential temperature profiles highlights two key model biases in all ensemble members: an absence of Pacific Waters in the water column and a deepening of the winter mixed layer in opposition to observations that show a reduction in depth of the mixed layer and a stronger increase in stratification. Results from a one-dimensional vertical heat budget show that remnant solar heat trapped beneath the halocline is mostly ventilated to the surface by mixing before the following melt season, while vertical advection associated with Ekman pumping, even in early fall when the winds are strong and the pack-ice weak, only has a small effect on the vertical heat transport. Furthermore, we estimate from the 1D heat budget a reduction of 1.4 m winter ice growth over three years (the residence time of ice in the Beaufort Gyre) associated with the missing Pacific Waters.
Over the past decades, Arctic sea ice has declined in thickness and extent and is shifting towards a seasonal ice regime, with accelerated ice drift and an increase in the seasonal ice zone. The changing Arctic ice cover will impact the trans-border exchange of sea ice between the Exclusive Economic Zones (EEZs) of the Arctic nations, with important implications for ice-rafted contaminant transport. To investigate projected changes to transnational ice exchange, we use the Lagrangian Ice Tracking System (LITS) to follow ice floes from the location of their formation to where they ultimately melt. We apply this tool to output from two ensembles of the Community Earth System Model (CESM): the CESM Large Ensemble, which uses a high emission scenario (RCP8.5) that leads to over 4°C global warming by 2100, and the CESM Low Warming ensemble, with reduced emissions that lead to a stabilized warming of 2°C by 2060. We also use the National Snow and Ice Data Center Polar Pathfinder and Climate Data Record products to evaluate the fidelity of the CESM present-day tracking simulations. Transnational ice exchange is well represented in CESM except for ice traveling from Russia to Norway, with twice as much ice following this pathway compared to observations. Initial results suggest this might be due to a combination of internal variability and speed biases in the observational data. The CESM projects that by mid-century, transnational ice exchange will expand, with a large increase in the fraction of transnational ice originating from Russia and the Central Arctic. As the seasonal ice zone grows, ice floes accelerate and transit times decrease, eventually cutting off ice exchange between longer pathways. By the end of the 21st century, we see a large impact of the emission scenario on ice exchange: consistent ice-free summers under the high emission scenario act to reduce the total fraction of transnational ice exchange compared to mid-century. The low emission scenario on the other hand continues to see an increase in transnational ice exchange by 2100. Under both scenarios, all pathways have decreased to average transit times of less than 2 years, compared to a maximum of 6 years under present-day conditions and 3 years by mid-century, effectively bringing the Arctic nations closer together.

Amélie Bouchat

and 17 more

As the sea-ice modeling community is shifting to advanced numerical frameworks, developing new sea-ice rheologies, and increasing model spatial resolution, ubiquitous deformation features in the Arctic sea ice are now being resolved by sea-ice models. Initiated at the Forum for Arctic Modelling and Observational Synthesis (FAMOS), the Sea Ice Rheology Experiment (SIREx) aims at evaluating current state-of-the-art sea-ice models using existing and new metrics to understand how the simulated deformation fields are affected by different representations of sea-ice physics (rheology) and by model configuration. Part I of the SIREx analysis is concerned with evaluation of the statistical distribution and scaling properties of sea-ice deformation fields from 35 different simulations against those from the RADARSAT Geophysical Processor System (RGPS). For the first time, the Viscous-Plastic (and the Elastic-Viscous-Plastic variant), Elastic-Anisotropic-Plastic, and Maxwell-Elasto-Brittle rheologies are compared in a single study. We find that both plastic and brittle sea-ice rheologies have the potential to reproduce the observed RGPS deformation statistics, including multi-fractality. Model configuration (e.g. numerical convergence, atmospheric forcing, spatial resolution) and physical parameterizations (e.g. ice strength parameters and ice thickness distribution) both have effects as important as the choice of sea-ice rheology on the deformation statistics. It is therefore not straightforward to attribute model performance to a specific rheological framework using current deformation metrics. In light of these results, we further evaluate the statistical properties of simulated Linear Kinematic Features (LKFs) in a SIREx Part II companion paper.

Nils Christian Hutter

and 16 more

Erica Rosenblum

and 9 more