Bradley J Garczynski

and 39 more

During the NASA Perseverance rover’s exploration of the Jezero crater floor, purple-hued coatings were commonly observed on rocks. These features likely record past water-rock-atmosphere interactions on the crater floor, and understanding their origin is important for constraining timing of water activity and habitability at Jezero. Here we characterize the morphologic, chemical, and spectral properties of the crater floor rock coatings using color images, visible/near-infrared reflectance spectra, and chemical data from the Mastcam-Z and SuperCam instruments. We show that coatings are common and compositionally similar across the crater floor, and consistent with a mixture of dust, fine regolith, sulfates, and ferric oxides indurated as a result of one or more episodes of widespread surface alteration. All coatings exhibit a similar smooth homogenous surface with variable thickness, color, and spatial extent on rocks, likely reflecting variable oxidation and erosional expressions related to formation and/or exposure age. Coatings unconformably overlie eroded natural rock surfaces, suggesting relatively late deposition that may represent one of the last aqueous episodes on the Jezero crater floor. While more common at Jezero, these coatings may be consistent with rock coatings previously observed in-situ at other landing sites and may be related to duricrust formation, suggesting a global alteration process on Mars that is not unique to Jezero. The Perseverance rover likely sampled these rock coatings on the crater floor and results from this study could provide important context for future investigations by the Mars Sample Return mission aimed at constraining the geologic and aqueous history of Jezero crater.

Adrian Brown

and 17 more

Perseverance landed at the Octavia E. Butler landing site next to the Séítah dune region in Jezero crater on 18 February 2021, in close proximity to the largest exposed carbonate deposit on Mars. These carbonate signatures have been shown to be associated with the strongest olivine signatures at Jezero crater (Goudge+ 2015, Brown+ 2020). Alteration of olivine can lead to carbonate+H2 production, an energy source for microbes (Mayhew+, 2013). The question of the origin of the olivine-carbonate unit represents both an opportunity and a challenge for the rover mission and future sample return efforts. Carbonate The landing site is not near the region of carbonate detections (Figure 1), however the rover’s westward traverse will take us over the carbonates on approach to the crater rim. No reliable indications of the 2.5 μm carbonate band have yet been convincingly detected by the SCAM VISIR instrument. Olivine Studies of the olivine-carbonate unit concluded the olivine is relatively Fe-rich and coarse grained (mm: Poulet+ 2007, Clenet+ 2013). The strongest in-situ olivine signatures are found in dune material analysed by LIBS/VISIR (Beyssac+ Mandon+ this conf). This grain size characterization work may be used to investigate the interaction of olivine with water and CO2 (Escamilla-Roa+ 2020). These surface-gas processes are enhanced when olivine is in fine grain form. Ash dispersal modeling is ongoing (Ravanis+ this conf) to determine the range different sized ash particles could have traveled on ancient Mars. We cannot directly compare the 1 μm band for CRISM and VISIR, so we developed a new method that measures the curvature of three points on the absorption bands to assess their relative Fo# shifts and applied it to both datasets. Lab spectroscopy will be used to assess spectral variations with composition versus grain size. Two key factors driving the Fo# are mantle composition and melt temperature. Brown+ (2020) estimated a range of Fo44-65 for the most redshifted olivine observed by CRISM. McGetchin+Smythe (1978) showed that an Fe-rich mantle composition would produce highly viscous lavas and suggested an upper bound of Fo70 for olivine. Understanding the astrobiological potential of the olivine-carbonate unit is a priority of M2020 (Farley+ 2020) and we will speculate on potential formation models in this contribution.