Low Earth Orbit (LEO) satellites offer extensive data of the radiation belt region, but utilizing these observations is challenging due to potential contamination and difficulty of intercalibration with spacecraft measurements at Highly Elliptic Orbit (HEO) that can observe all equatorial pitch-angles. This study introduces a new intercalibration method for satellite measurements of energetic electrons in the radiation belts using a data assimilation approach. We demonstrate our technique by intercalibrating the electron flux measurements of the National Oceanic and Atmospheric Administration (NOAA) Polar-orbiting Operational Environmental Satellites (POES) NOAA-15,-16,-17,-18,-19 and MetOp-02 against Van Allen Probes observations from October 2012 to September 2013. We use a reanalysis of the radiation belts obtained by assimilating Van Allen Probes and Geostationary Operational Environmental Satellites (GOES) observations into 3-D Versatile Electron Radiation Belt (VERB-3D) code simulations via a standard Kalman filter. We compare the reanalysis to the POES dataset and estimate the flux ratios at each time, location and energy. From these ratios we derive energy and $L^*$ dependent recalibration coefficients. To validate our results, we analyse on-orbit conjunctions between POES and Van Allen Probes. The conjunction recalibration coefficients and the data-assimilative estimated coefficients show strong agreement, indicating that the differences between POES and Van Allen Probes observations remain within a factor of two. Additionally, the use of data assimilation allows for improved statistics, as the possible comparisons are considerably increased. Data-assimilative intercalibration of satellite observations is an efficient approach that enables intercalibration of large datasets using short periods of data.
Radial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al (2005), Ozeke et al. (2014), Ali et al. (2015, 2016); Ali (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB) code, and compare the results to Van Allen Probes observations. First, 1-D radial diffusion simulations are performed, isolating the contribution of solely radial diffusion. We then take into account effects of local acceleration and loss showing additional 3-D simulations, including diffusion across pitch-angle and energy, as well as mixed diffusion. For the L* range studied, the difference between simulations with Brautigam and Albert (2000), Ozeke et al. (2014), and Liu et al. (2016) parameterizations is shown to be small, with Brautigam and Albert (2000) offering the best agreement with observations. Using Ali et al. (2016)’s parameterization tended to result in a lower flux at 1 MeV than both the observations and the VERB simulations using the other coefficients. We find that the 3-D simulations are less sensitive to the radial diffusion coefficient chosen than the 1-D simulations, suggesting that for 3-D radiation belt models, a similar result is likely to be achieved, regardless of whether Brautigam and Albert (2000), Ozeke et al. (2014), and Liu et al. (2016) parameterizations are used.