Joaquin Diaz Pena

and 5 more

Space-based observations of the signatures associated with STEVE show how this phenomenon might be closely related to an extreme version of a SAID channel. Measurements show high velocities ($>$4km/s), high temperatures ($>$4,000 K), and very large current density drivers (up to 1$\mu$A/m$^2$). This phenomena happens in a small range of latitudes, less than a degree, but with a large longitudinal span. In this study, we utilize the GEMINI model to simulate an extreme SAID/STEVE. We assume a FAC density coming from the magnetosphere as the main driver, allowing all other parameters to adjust accordingly. We have two main objectives with this work: show how an extreme SAID can have velocity values comparable or larger than the ones measured under STEVE, and to display the limitations and missing physics that arise due to the extreme values of temperature and velocity. Changes had to be made to GEMINI due to the extreme conditions, particularly some neutral-collision frequencies. The importance of the temperature threshold at which some collision frequencies go outside their respective bounds, as well as significance of the energies that would cause inelastic collisions and impact ionization are displayed and discussed. We illustrate complex structures and behaviors, emphasizing the importance of 3D simulations in capturing these phenomena. Longitudinal structure is emphasized, as the channel develops differently depending on MLT. However, these simulations should be viewed as approximations due to the limited observations available to constrain the model inputs and the assumptions made to achieve sensible results.

Jone Peter Reistad

and 6 more

We present a new technique for the upcoming tri-static incoherent scatter radar system EISCAT 3D (E3D) to perform a volumetric reconstruction of the 3D ionospheric electric current density vector field, focusing on the feasibility of the E3D system. The input to our volumetric reconstruction technique are estimates of the 3D current density perpendicular to the main magnetic field, $\mathbf{j}_\perp$, and its co-variance, to be obtained from E3D observations based on two main assumptions: 1) Ions fully magnetised above the $E$ region, set to 200 km here. 2) Electrons fully magnetised above the base of our domain, set to 90 km. In this way, $\mathbf{j}_\perp$ estimates are obtained without assumptions about the neutral wind field, allowing it to be subsequently determined. The volumetric reconstruction of the full 3D current density is implemented as vertically coupled horizontal layers represented by Spherical Elementary Current Systems with a built-in current continuity constraint. We demonstrate that our technique is able to retrieve the three dimensional nature of the currents in our idealised setup, taken from a simulation of an active auroral ionosphere using the Geospace Environment Model of Ion-Neutral Interactions (GEMINI). The vertical current is typically less constrained than the horizontal, but we outline strategies for improvement by utilising additional data sources in the inversion. The ability to reconstruct the neutral wind field perpendicular to the magnetic field in the $E$ region is demonstrated to mostly be within $\pm 50$ m/s in a limited region above the radar system in our setup.

Joaquin Diaz Pena

and 10 more

This study exploits the volumetric sampling capabilities of the Resolute Bay Incoherent Scatter Radar (RISR-N) in collaboration with all-sky imagery and in-situ measurements (DMSP) to examine the interplay between cold plasma transport and auroral precipitation during a high-latitude lobe reconnection event on the dawn side. The IMF had an impulsive negative excursion in B$_z$ embedded within a prolonged period of B$_z>0$ and B$_y<0$. The combined effects of transport and magnetic stress release associated with a reconnection pulse resulted in a co-mingling of plasma patches and soft electron precipitation, creating regions of elevated electron density and temperature. Altitude profiles of ionospheric parameters extracted in the rest frame of the drifting patch showed an increase in $T_e$ above 200 km and $N_e$ below 250 km (both hallmarks of soft precipitation), while also showing small and predictable changes in $N_e$ near the F-region peak over the 34-minute duration of the event. For the first time, we identified that the simultaneous appearance of elevated $T_e$ and elevated F-region $N_e$ (i.e., a ‘hot patch’), thus providing a new formation process for hot patches. The physics-based GEMINI model was used to explore the response to the observed precipitation as a function of altitude and time. Enhancements in $N_e$ in the topside ionosphere (e.g., DMSP altitudes) are caused by upward ambipolar diffusion induced by ionospheric heating and not impact ionization. The study highlights the importance of densely distributed measurements in space and time for understanding both mesoscale and small-scale ionospheric dynamics in regions subject to complex forcing.
The investigation of atmospheric tsunamigenic acoustic and gravity wave (TAGW) dynamics, from the ocean surface to the thermosphere, is performed through the numerical computations of the 3D compressible nonlinear Navier-Stokes equations. Tsunami propagation is first simulated using a nonlinear shallow water model, which incorporates instantaneous or temporal evolutions of initial tsunami distributions (ITD). Surface dynamics are then imposed as a boundary condition to excite TAGWs into the atmosphere from the ground level. We perform a case study of a large tsunami associated with the 2011 M9.1 Tohuku-Oki earthquake, and parametric studies with simplified and demonstrative bathymetry and ITD. Our results demonstrate that TAGW propagation, controlled by the atmospheric state, can evolve nonlinearly and lead to wave self-acceleration effects and instabilities, followed by the excitation of secondary acoustic-gravity waves (SAGWs), spanning a broad frequency range. The variations of the ocean depth result in a change of tsunami characteristics and subsequent tilt of the TAGW packet, as the wave’s intrinsic frequency spectrum is varied. In addition, focusing of tsunamis and their interactions with seamounts and islands may result in localized enhancements of TAGWs, which further indicates the crucial role of bathymetry variations. Along with SAGWs, leading long-period phases of the TAGW packet propagate ahead of the tsunami wavefront and thus can be observed prior to the tsunami arrival. Our modeling results suggest that TAGWs from large tsunamis can drive detectable and quantifiable perturbations in the upper atmosphere under a wide range of scenarios, and uncover new challenges and opportunities for their observations.