Anh Le-Duy Pham

and 7 more

Release of iron (Fe) from continental shelves is a major source of this limiting nutrient for phytoplankton in the open ocean, including productive Eastern Boundary Upwelling Systems. The mechanisms governing the transport and fate of Fe along continental margins remain poorly understood, reflecting interaction of physical and biogeochemical processes that are crudely represented by global ocean biogeochemical models. Here, we use a submesoscale-permitting physical-biogeochemical model to investigate processes governing the delivery of shelf-derived Fe to the open ocean along the northern U.S. West Coast. We find that a significant fraction (∼20%) of the Fe released by sediments on the shelf is transported offshore, fertilizing the broader Northeast Pacific Ocean. This transport is governed by two main pathways that reflect interaction between the wind-driven ocean circulation and Fe release by low-oxygen sediments: the first in the surface boundary layer during upwelling events; the second in the bottom boundary layer, associated with pervasive interactions of the poleward California Undercurrent with bottom topography. In the water column interior, transient and standing eddies strengthen offshore transport, counteracting the onshore pull of the mean upwelling circulation. Several hot-spots of intense Fe delivery to the open ocean are maintained by standing meanders in the mean current and enhanced by transient eddies and seasonal oxygen depletion. Our results highlight the importance of fine-scale dynamics for the transport of Fe and shelf-derived elements from continental margins to the open ocean, and the need to improve representation of these processes in biogeochemical models used for climate studies.

Anh Le-Duy Pham

and 3 more

Marine free-living bacteria play a key role in the cycling of essential biogeochemical elements, including iron (Fe), during their uptake, transformation and release of organic matter. Similar to phytoplankton, the growth of free-living bacteria is regulated by resources such as Fe, and the low availability of these resources may influence bacterial interactions with phytoplankton, causing knock-on effects for biogeochemical cycling. Yet, knowledge of the factors limiting free-living bacterial growth and their role within the Fe cycle is poorly constrained. Here, we explicitly represent free-living bacteria in a global ocean biogeochemistry model to address these questions. We find that although Fe can emerge as proximally limiting in the tropical Pacific and in high-latitude regions during summer, the growth of free-living bacteria is ultimately controlled by the availability of labile dissolved organic carbon. In Fe-limited regions, free-living bacterial biomass is sensitive to their Fe uptake capability in seasonally Fe-limitation regions and to their minimum Fe requirements in regions perennially Fe-limited. Fe consumption by free-living bacteria is significant in the upper ocean in our model, and their competition with phytoplankton for Fe affects phytoplankton growth dynamics. The impact of free-living bacteria on the Fe distribution in the ocean interior is small due to a tight coupling between Fe uptake and release. Moving forward, future work that considers particle-attached bacteria and different bacterial metabolisms is needed to explore the broader role of bacteria in ocean Fe cycling. In this context, the global growing ’omics data from ocean observing programs can play a crucial role.

Anh Le-Duy Pham

and 1 more

Phytoplankton growth in the Indian Ocean is limited by nitrogen and phosphorus in the north and by iron in the south. Increasing anthropogenic atmospheric deposition of nitrogen and dissolved iron (dFe) into the ocean can thus lead to significant responses from the Indian Ocean ecosystems. Previous modeling studies investigated the impacts of anthropogenic nutrient deposition on the ocean, but their results are uncertain due to incomplete representations of the Fe cycling. This study uses a state-of-the-art ocean ecosystem and Fe cycling model to evaluate the transient responses of ocean productivity and carbon uptake in the Indian Ocean, focusing on the centennial time scale. The model includes three major dFe sources and represents an internal Fe cycling modulated by scavenging, desorption, and complexation with multiple, spatially varying ligand classes. Sensitivity simulations show that after a century of anthropogenic deposition, increased dFe input stimulates diatom in the southern Indian Ocean poleward of 50S and the southeastern tropics. However, diatom decreases in the southern Arabian Sea due to the phosphorus limitation, and diatom is outcompeted there by coccolithophores and picoplankton, which have a lower phosphorus demand. These changes in diatom and coccolithophores productions alter the balance between the organic and carbonate pumps in the Indian Ocean, increasing the carbon uptake poleward of 50 S and the southeastern tropics while decreasing it in the Arabian Sea. Our results reveal the important role of ecosystem dynamics in controlling the sensitivity of carbon fluxes in the Indian Ocean under the impact of anthropogenic nutrient deposition.