High-relief glacial valleys shape the modern topography of the Southern Patagonian Andes, but their formation remains poorly understood. Two Miocene plutonic complexes in the Andean retroarc, the Fitz Roy (49°S) and Torres del Paine (51°S) massifs, were emplaced between 16.9–16.4 Ma and 12.6–12.4 Ma, respectively. Subduction of oceanic ridge segments initiated ca. 16 Ma at 54°S, leading to northward opening of a slab window with associated mantle upwelling. The onset of major glaciations caused drastic topographic changes since ca. 7 Ma. To constrain the respective contributions of tectonic-mantle dynamics and fluvio-glacial erosion to rock exhumation and landscape evolution, we perform inverse thermal modeling of a new dataset of zircon and apatite (U-Th)/He from the two massifs, complemented by apatite 4He/3He data for Torres del Paine. Our results show rapid rock exhumation recorded only in the Fitz Roy massif between 10 and 8 Ma, which we ascribe to local mantle upwelling forcing surface uplift and intensified erosion around 49°S. Both massifs record a pulse of rock exhumation between 7 and 4 Ma, which we interpret as enhanced erosion during the beginning of Patagonian glaciations. After a period of erosional and tectonic quiescence in the Pliocene, increased rock exhumation since 3-2 Ma is interpreted as the result of alpine glacial valley carving promoted by reinforced glacial-interglacial cycles. This study highlights that glacial erosion was the main driver to rock exhumation in the Patagonian retroarc since 7 Ma, but that mantle upwelling might be a driving force to rock exhumation as well.
Located at the northern tip of the Altiplano, the Abancay Deflection marks abruptly the latitudinal segmentation of the Central Andes spreading over the Altiplano to the south and the Eastern Cordillera northward. The striking contrast in terms of morphology between the low-relief Altiplano and the high-jagged Eastern Cordillera makes this area a privileged place to determine spatio-temporal variations in surface and/or rock uplift and discuss the latest phase of the formation of the Central Andes. Here, we aim to quantify exhumation and uplift patterns in the Abancay Deflection since 40 Ma, and present new apatite (U-Th)/He and fission-track data from five altitudinal profiles and additional individual samples. Age-Elevation relationships and thermal modeling both evidence that the Abancay Deflection experienced a moderate, spatially-uniform and steady exhumation at 0.2±0.1 km/m.y. between 40 Ma and ~5 Ma implying common large-scale exhumation mechanisms. From ~5 Ma, while the northern part of the Eastern Cordillera and the Altiplano registered similar ongoing slow exhumation, the southern part of the Eastern Cordillera experienced one order-of-magnitude of exhumation acceleration (1.2±0.4 km/m.y). This differential exhumation since ~5 Ma implies active tectonics, river capture and incision affecting the southern Eastern Cordillera. 3D thermo-kinematic modeling favors a tectonic decoupling between the Altiplano and the Eastern Cordillera through backthrusting activity of the Apurimac fault. We speculate that the Abancay Deflection, with its “bulls-eye” structure and significant exhumation rate since 5 Ma, may represent an Andean proto-syntaxis, similar to the syntaxes described in the Himalaya or Alaska.