Joshua B. Russell

and 7 more

Seismic anisotropy produced by aligned olivine in oceanic lithosphere offers a window into mid-ocean ridge dynamics. Yet, interpreting anisotropy in the context of grain-scale deformation processes and strain observed in laboratory experiments and natural olivine samples has proven challenging due to incomplete seismological constraints and length scale differences spanning orders of magnitude. To bridge this observational gap, we estimate an in situ elastic tensor for oceanic lithosphere using co-located compressional- and shear-wavespeed anisotropy observations at the NoMelt experiment located on ~70 Ma seafloor. The elastic model for the upper 7 km of the mantle, NoMelt_SPani7, is characterized by a fast azimuth parallel to the fossil-spreading direction, consistent with corner-flow deformation fabric. We compare this model with a database of 123 petrofabrics from the literature to infer olivine crystallographic orientations and shear strain accumulated within the lithosphere. Direct comparison to olivine deformation experiments indicates strain accumulation of 250–400% in the shallow mantle. We find evidence for D-type olivine lattice-preferred orientation (LPO) with fast [100] parallel to the shear direction and girdled [010] and [001] crystallographic axes perpendicular to shear. D-type LPO implies similar amounts of slip on the (010)[100] and (001)[100] easy slip systems during mid-ocean ridge spreading; we hypothesize that grain-boundary sliding during dislocation creep relaxes strain compatibility, allowing D-type LPO to develop in the shallow lithosphere. Deformation dominated by dislocation-accommodated grain-boundary sliding (disGBS) has implications for in situ stress and grain size during mid-ocean ridge spreading and implies grain-size dependent deformation, in contrast to pure dislocation creep.

D. Sarah Stamps

and 20 more

Continental rifting is a critical component of the plate tectonic paradigm, and occurs in more than one mode, phase, or stage. While rifting is typically facilitated by abundant magmatism, some rifting is not. We aim to develop a better understanding of the fundamental processes associated with magma-poor (dry) rifting. Here, we provide an overview of the NSF-funded Dry Rifting In the Albertine-Rhino graben (DRIAR) project, Uganda. The project goal is to apply geophysical, geological, geochemical, and geodynamic techniques to investigate the Northern Western Branch of the East African Rift System in Uganda. We test three hypotheses: (1) in magma-rich rifts, strain is accommodated through lithospheric weakening from melt, (2) in magma-poor rifts, melt is present below the surface and weakens the lithosphere such that strain is accommodated during upper crustal extension, and (3) in magma-poor rifts, there is no melt at depth and strain is accommodated along pre-existing structures such as inherited compositional, structural, and rheological lithospheric heterogeneities. Observational methods in this project include: passive seismic to constrain lithospheric structure and asthenospheric flow patterns; gravity to constrain variations in crustal and lithospheric thickness; magnetics to constrain the thermal structure of the upper crust; magnetotellurics to constrain lithospheric thickness and the presence of melt; GNSS to constrain surface motions, extension rates, and help characterize mantle flow; geologic mapping to document the geometry and kinematics of active faults; seismic reflection analyses of intra-rift faults to document temporal strain migration; geochemistry to identify and quantify mantle-derived fluids in hot springs and soil gases; and geodynamic modeling to develop new models of magma-poor rifting processes. Fieldwork will begin in January 2022 and the first DRIAR field school is planned for summer 2022. Geodynamic modeling work and morphometric analyses are already underway.

Maureen D. Long

and 12 more

The eastern margin of North America has been shaped by a series of tectonic events including the Paleozoic Appalachian Orogeny and the breakup of Pangea during the Mesozoic. For the past ~200 Ma, eastern North America has been a passive continental margin; however, there is evidence in the Central Appalachian Mountains for post-rifting modification of lithospheric structure. This evidence includes two co-located pulses of magmatism that post-date the rifting event (at 152 Ma and 47 Ma) along with low seismic velocities, high seismic attenuation, and high electrical conductivity in the upper mantle. Here, we synthesize and evaluate constraints on the lithospheric evolution of the Central Appalachian Mountains. These include tomographic imaging of seismic velocities, seismic and electrical conductivity imaging along the MAGIC array, gravity and heat flow measurements, geochemical and petrological examination of Jurassic and Eocene magmatic rocks, and estimates of erosion rates from geomorphological data. We discuss and evaluate a set of possible mechanisms for lithospheric loss and intraplate volcanism beneath the region. Taken together, recent observations provide compelling evidence for lithospheric loss beneath the Central Appalachians; while they cannot uniquely identify the processes associated with this loss, they narrow the range of plausible models, with important implications for our understanding of intraplate volcanism and the evolution of continental lithosphere. Our preferred models invoke a combination of (perhaps episodic) lithospheric loss via Rayleigh-Taylor instabilities and subsequent small-scale mantle flow in combination with shear-driven upwelling that maintains the region of thin lithosphere and causes partial melting in the asthenosphere.