Mia Ruppel

and 3 more

Kathryn Vanden Hoek

and 4 more

Anthropogenic factors such as climate change, harsh agricultural practices, and mining have contributed to increases in soil salinization and heavy metal contamination. Highly saline environments drastically lower yield for crop species and elevated levels of toxic metals like cadmium are carcinogenic in the environment. Some plants that have evolved in high-salinity habitats or in soils with heavy metals could be used to remediate contaminated soils. Halophytes are plants with various adaptations that allow them to survive and reproduce in saline conditions. General mechanisms for salt tolerance/uptake in halophytes are hypothesized to help deal with other stresses like heavy metals. Plants with these traits could be utilized to extract salt and heavy metals from affected soils in a process called phytoremediation. We plan to develop Sea Rocket (Cakile maritima) in the Mustard family as a model system to understand mechanisms of salt (NaCl) and cadmium uptake and tolerance, as it has been shown to accumulate both. As part of this study, we will hydroponically grow C. maritima in different stress treatments using salt and cadmium. As the plants uptake the pollutants, the conductivity of the solution will change. We will develop an automated pipeline to track these changes in real-time using conductivity sensors. In addition, we will sample root and leaf tissues at various time points to measure salt and cadmium uptake using ICP-OES elemental analysis. This data will provide insights into salt and cadmium uptake/tolerance and paves a path toward efficient and viable solutions improving phytoremediation approaches.

Shawn Thomas

and 2 more

Generating data has become cheaper and easier, but alone is not sufficient to answer biological questions – data must be analyzed and interpreted. However, many algorithms can create or exacerbate biases (e.g., facial-recognition, ancestry, and disease risk). This necessitates incorporating diverse perspectives to confront both the moral and technical “big data challenges”. To move to a future where this is possible, it is necessary for researchers to develop skills in data management, processing, and analytics. Specifically, the field of plant phenotyping has moved from time consuming hand measurements to the use and development of high-throughput phenotyping. These systems require data-enabled/fluent users, yet academic programs in biology do not provide sufficient data science training. Here we present the Bioinformatics in Plant Science (BIPS) program at the University of Missouri (MU) as a model for training the next generation of data-enabled/fluent scientists. BIPS aims to mentor undergraduate students to build foundational skills in plant biology, research, and computational science. Our program pairs biology and computer science students to address biological questions through computational methods, with many focusing on plant phenotyping methods. The students learn to tackle problems using multidisciplinary approaches, alongside learning how to work in teams while building science communication skills (e.g., professional conferences, research forums, presenting to lawmakers). Through peer learning, BIPS students can understand and incorporate diverse perspectives from both the biological and computational side to address one of NSF’s 10 big ideas: harnessing the data revolution.

Kathryn Vanden Hoek

and 4 more

Anthropogenic factors such as climate change, harsh agricultural practices, and mining have contributed to increases in soil salinization and heavy metal contamination. Highly saline environments drastically lower yield for crop species and elevated levels of toxic metals like cadmium are carcinogenic in the environment. Some plants that have evolved in high-salinity habitats or in soils with heavy metals could be used to remediate contaminated soils. Halophytes are plants with various adaptations that allow them to survive and reproduce in saline conditions. General mechanisms for salt tolerance/uptake in halophytes are hypothesized to help deal with other stresses like heavy metals. Plants with these traits could be utilized to extract salt and heavy metals from affected soils in a process called phytoremediation. We plan to develop Sea Rocket (Cakile maritima) in the Mustard family as a model system to understand mechanisms of salt (NaCl) and cadmium uptake and tolerance, as it has been shown to accumulate both. As part of this study, we will hydroponically grow C. maritima in different stress treatments using salt and cadmium. As the plants uptake the pollutants, the conductivity of the solution will change. We will develop an automated pipeline to track these changes in real-time using conductivity sensors. In addition, we will sample root and leaf tissues at various time points to measure salt and cadmium uptake using ICP-OES elemental analysis. This data will provide insights into salt and cadmium uptake/tolerance and paves a path toward efficient and viable solutions improving phytoremediation approaches.