Julia E. Stawarz

and 16 more

Decomposing the electric field (E) into the contributions from generalized Ohm’s law provides key insight into both nonlinear and dissipative dynamics across the full range of scales within a plasma. Using high-resolution, multi-spacecraft measurements of three intervals in Earth’s magnetosheath from the Magnetospheric Multiscale mission, the influence of the magnetohydrodynamic, Hall, electron pressure, and electron inertia terms from Ohm’s law, as well as the impact of a finite electron mass, on the turbulent spectrum are examined observationally for the first time. The magnetohydrodynamic, Hall, and electron pressure terms are the dominant contributions to over the accessible length scales, which extend to scales smaller than the electron inertial length at the greatest extent, with the Hall and electron pressure terms dominating at sub-ion scales. The strength of the non-ideal electron pressure contribution is stronger than expected from linear kinetic Alfvén waves and a partial anti-alignment with the Hall electric field is present, linked to the relative importance of electron diamagnetic currents in the turbulence. The relative contribution of linear and nonlinear electric fields scale with the turbulent fluctuation amplitude, with nonlinear contributions playing the dominant role in shaping for the intervals examined in this study. Overall, the sum of the Ohm’s law terms and measured agree to within ~20% across the observable scales. These results both confirm general expectations about the behavior of in turbulent plasmas and highlight features that should be explored further theoretically.

Richard E. Denton

and 6 more

Recently a polynomial reconstruction technique has been developed for reconstructing the magnetic field in the vicinity of multiple spacecraft, and has been applied to events observed by the Magnetospheric Multiscale (MMS) mission. Whereas previously the magnetic field was reconstructed using spacecraft data from a single time, here we extend the method to allow input over a span of time. This extension increases the amount of input data to the model, improving the reconstruction results, and allows the velocity of the magnetic structure to be calculated. The effect of this modification, as well as many other options, is explored by comparing reconstructed fields to those of a three-dimensional particle in cell simulation of magnetic reconnection, using virtual spacecraft data as input. We often find best results using multiple-time input, a moderate amount of smoothing of the input data, and a model with a reduced set of parameters based on the ordering that the maximum, intermediate, and minimum values of the gradient of the vector magnetic field are well separated. When spacecraft input data are temporally smoothed, reconstructions are representative of spatially smoothed fields. Two MMS events are reconstructed. The first of these was late in the mission when it was not possible to use the current density for MMS4 because of its instrument failure. The second shows a rotational discontinuity without an X or O line. In both cases, the reconstructions yield a visual representation of the magnetic structure that is consistent with earlier studies.

Rungployphan Kieokaew

and 27 more

Magnetopause Kelvin-Helmholtz (KH) waves are believed to mediate solar wind plasma transport via small-scale mechanisms. Vortex-induced reconnection (VIR) was predicted in simulations and recently observed using NASA’s Magnetospheric Multiscale (MMS) mission data. Flux Transfer Events (FTEs) produced by VIR at multiple locations along the periphery of KH waves were also predicted in simulations but detailed observations were still lacking. Here we report MMS observations of an FTE-type structure in a KH wave trailing edge during KH activity on 5 May 2017 on the dawnside flank magnetopause. The structure is characterised by (1) bipolar magnetic BY variation with enhanced core field BZ and (2) enhanced total pressure with dominant magnetic pressure. The cross-section size of the FTE is found to be consistent with vortex-induced flux ropes predicted in the simulations. Unexpectedly, we observe an ion jet (VY), electron parallel heating, ion and electron density enhancements, and other signatures that can be interpreted as a reconnection exhaust at the FTE central current sheet. Moreover, pitch angle distributions of suprathermal electrons on either side of the current sheet show different properties, indicating different magnetic connectivities. This FTE-type structure may thus alternatively be interpreted as two interlaced flux tubes with reconnection at the interface as reported by Kacem et al. (2018) and Øieroset et al. (2019). The structure may be the result of interaction between two flux tubes, likely produced by multiple VIR at the KH wave trailing edge, and constitutes a new class of phenomenon induced by KH waves.

Souhail Dahani

and 15 more

Flux Transfer Events (FTEs) are transient magnetic flux ropes typically found at the Earth’s magnetopause on the dayside. While it is known that FTEs are generated by magnetic reconnection, it remains unclear how the details of magnetic reconnection controls their properties. A recent study showed that the helicity sign of FTEs positively correlates with the east-west (By) component of the Interplanetary Magnetic Field (IMF). With data from the Cluster and Magnetospheric Multiscale missions, we performed a statistical study of 166 quasi force-free FTEs. We focus on their helicity sign and possible association with upstream solar wind conditions and local magnetic reconnection properties. Using both in situ data and magnetic shear modeling, we find that FTEs whose helicity sign corresponds to the IMF By are associated with moderate magnetic shears while those that does not correspond to the IMF By are associated with higher magnetic shears. While uncertainty in IMF propagation to the magnetopause may lead to randomness in the determination of the flux rope core field and helicity, we rather propose that for small IMF By, which corresponds to high shear and low guide field, the Hall pattern of magnetic reconnection determines the FTE core field and helicity sign. In that context we explain how the temporal sequence of multiple X-line formation and the reconnection rate are important in determining the flux rope helicity sign. This work highlights a fundamental connection between kinetic processes at work in magnetic reconnection and the macroscale structure of FTEs.