Jean-Christophe Golaz

and 70 more

This work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima (DECK) simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate is generally realistic, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Programme (WCRP) assessment. However, E3SMv2 significantly underestimates the global mean surface temperature in the second half of the historical record. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.

Donghui Xu

and 4 more

Floodplain inundation links river and land systems through significant water, sediment, and nutrient exchanges. However, these two-way interactions between land and river are currently missing in most Earth System Models. In this study, we introduced the two-way hydrological coupling between the land component, ELM, and the river component, MOSART, in Energy Exascale Earth System Model (E3SM) to study the impacts of floodplain inundation on land and river processes. We calibrated the river channel geometry and developed a new data-driven inundation scheme to improve the simulation of inundation dynamics in E3SM. The new inundation scheme captures 96% of the spatial variation of inundation area in a satellite inundation product at global scale, in contrast with 7% when the default inundation scheme of E3SM was used. Global simulations including the new inundation scheme performed at resolution with and without two-way land-river coupling were used to quantify the impact of coupling. Comparisons show that two-way coupling modifies the water and energy cycle in 20% of the global land cells. Specifically, riverine inundation is reduced by two-way coupling, but inland inundation is intensified. Wetter periods are more impacted by the two-way coupling at the global scale, while regions with different climates exhibit different sensitivities. The two-way exchange of water between the land and river components of E3SM provides the foundation for enabling two-way coupling of land-river sediment and biogeochemical fluxes. These capabilities will be used to improve understanding of the interactions between water and biogeochemical cycles and their response to human perturbations.

Daehyun Kim

and 8 more

The present study examines the characteristics of the MJO events represented in the Energy Exascale Earth System Model version 1 (E3SMv1), DOE’s new Earth system model. The coupled E3SMv1 realistically simulates the eastward propagation of precipitation and Moist Static Energy (MSE) anomalies associated with the MJO. As in observation, horizontal moisture advection and longwave radiative feedback are found to be the dominant processes in E3SMv1 that lead to the eastward movement and maintenance of the MSE anomalies, respectively. Modulation of the diurnal cycle of precipitation in the Maritime Continent region by the MJO is also well represented in the model despite systematic biases in the magnitude and phase of the diurnal cycle. On the midlatitude impact of the MJO, E3SMv1 reasonably captures the pattern of the MJO teleconnection across the North Pacific and North America, with improvement in the performance in a high-resolution version, despite the magnitude being a bit weaker than the observed feature. About interannual variability of the MJO, the El Niño-Southern Oscillation (ENSO) modulation of the zonal extent of MJO’s eastward propagation, as well as associated changes in the mean state moisture gradient in the tropical west Pacific, is well reproduced in the model. However, MJO in E3SMv1 exhibits no sensitivity to the Quasi-Biennial Oscillation (QBO), with the MJO propagation characteristics being almost identical between easterly QBO and westerly QBO years. Processes that have been suggested as critical to MJO simulation are also examined by utilizing recently developed process-oriented diagnostics.

Dalei Hao

and 7 more

Sub-grid topographic heterogeneity has large impacts on surface energy balance and land-atmosphere interactions. However, the impacts of representing sub-grid topographic effects in land surface models (LSMs) on surface energy balance and boundary conditions remain unclear. This study analyzed and evaluated the impacts of sub-grid topographic representations on surface energy balance, turbulent heat flux and scalar (co-)variances in the Energy Exascale Earth System Model (E3SM) land model (ELM). Three sub-grid topographic representations in ELM were compared: (1) the default sub-grid structure (D), (2) the recently developed sub-grid topographic structure (T), and (3) high spatial resolution (1KM). Additionally, two different solar radiation schemes in ELM were compared: (1) the default plane-parallel radiative transfer scheme (PP) and (2) the parameterization scheme (TOP) that accounts for sub-grid topographic effects on solar radiation. A series of simulations with the three grid structures (D, T and 1KM) and two treatments of solar radiation (TOP and PP) were carried out in the Sierra Nevada, California. There are significant differences between TOP and PP in the 1-km simulated surface energy balance, but the differences in the mean values and standard deviations become small when aggregated to the grid-scale (i.e., 0.5°). The T configuration better mimics the 1KM simulations than the D configuration, and better captures the sub-grid topographic effects on surface energy balance as well as surface boundary conditions. These results underline the importance of representing sub-grid topographic heterogeneities in LSMs and motivate future research to understand the sub-grid topographic effects on land-atmosphere interactions over mountain areas.

Weiran Liu

and 6 more

Calvin Howes

and 22 more

The southeast Atlantic Ocean provides an excellent natural laboratory to study smoke-cloud interactions, a large driver of uncertainty in climate projections. The value of studying this in particular region is largely attributable to two factors---the expansive, bright, semi-permanent stratocumulus cloud deck and the fact that southern Africa is the largest source of biomass-burning aerosols in the world. We study this region using the WRF-Chem model with CAM5 aerosols and in situ observations from the ORACLES, LASIC, and CLARIFY field campaigns, all of which overlapped in August 2017. Across these campaigns, we compare aerosol, cloud, and thermodynamic variables to quantify model performance and expand upon observational findings of aerosol-cloud effects. Specifically, our approach is to analyze aerosol and cloud properties along flight tracks, picking out uniform legs within tropospheric smoke plumes and in the boundary layer. This unique approach allows us to sample the high spatiotemporal variability that can get lost to large-scale averaging. It also allows process-level comparison of local cloud responses to aerosol conditions, and measure model performance in those same processes. Along with better quantifying model predictive power, we find and justify updates to model parameters and processes to better emulate observations, notably aerosol size parameters. Preliminary results suggest that WRF-CAM5 is activating a smaller percentage of aerosols into cloud droplets than shown in observations, which could lead to biased modeling of aerosol indirect radiative effects on a larger scale. We explore this effect further with CCN activation tendency, updraft, particle sizing, and composition analysis, as well as broader dynamics like entrainment and removal rates. Comparing the model with similar instrument suites across multiple colocated campaigns also allows us to quantify instrument uncertainty in ways that a focus on a single campaign cannot and gives further context to the model performance.

Mingxuan Wu

and 16 more

Nitrate aerosol plays an important role in affecting regional air quality as well as Earth’s climate. However, it is not well represented or even neglected in many global climate models. In this study, we couple the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module with the four-mode version of the Modal Aerosol Module (MAM4) in DOE’s Energy Exascale Earth System Model version 2 (E3SMv2) to treat nitrate aerosol and its radiative effects. We find that nitrate aerosol simulated by E3SMv2-MAM4-MOSAIC is sensitive to the treatment of gaseous HNO3 transfer to/from interstitial particles related to accommodation coefficients of HNO3 (αHNO3) on dust and non-dust particles. We compare three different treatments of HNO3 transfer: 1) a treatment (MTC_SLOW) that uses a low αHNO3 in the mass transfer coefficient (MTC) calculation; 2) a dust-weighted MTC treatment (MTC_WGT) that uses a high αHNO3 on non-dust particles; and 3) a dust-weighted MTC treatment that also splits coarse mode aerosols into the coarse dust and sea salt sub-modes in MOSAIC (MTC_SPLC). MTC_WGT and MTC_SPLC increase the global annual mean (2005-2014) nitrate burden from 0.096 (MTC_SLOW) to 0.237 and 0.185 Tg N, respectively, mostly in the coarse mode. They also produce stronger nitrate direct radiative forcing (–0.048 and –0.051 W m–2, respectively) and indirect forcing (–0.33 and –0.35 W m–2, respectively) than MTC_SLOW (–0.021 and –0.24 W m–2). All three treatments overestimate nitrate surface concentrations compared with ground-based observations. MTC_WGT and MTC_SPLC improve the vertical profiles of nitrate concentrations against aircraft measurements below 400 hPa.