Jin Ma

and 17 more

We present a comparison of atmospheric transport models that simulate carbonyl sulfide (COS). This is part II of the ongoing Atmospheric Transport Model (ATM) Inter-comparison Project (TransCom–COS). Differently from part I, we focus on seven model intercomparison by transporting two recent COS inversions of NOAA surface data within TM5-4DVAR and LMDz models. The main goals of TransCom-COS part II are (a) to compare the COS simulations using the two sets of optimized fluxes with simulations that use a control scenario (part I) and (b) to evaluate the simulated tropospheric COS abundance with aircraft-based observations from various sources. The output of the seven transport models are grouped in terms of their vertical mixing strength: strong and weak mixing. The results indicate that all transport models capture the meridional distribution of COS at the surface well. Model simulations generally match the aircraft campaigns HIPPO and ATom. Comparisons to HIPPO and ATom demonstrate a gap between observed and modelled COS over the Pacific Ocean at 0–40N, indicating a potential missing source in the free troposphere. The effects of seasonal continental COS uptake by the biosphere, observed on HIPPO and ATom over oceans, is well reproduced by the simulations. We found that the strength of the vertical mixing within the column as represented in the various atmospheric transport models explains much of the model to model differences. We also found that weak-mixing models transporting the optimized flux derived from the strong-mixing TM5 model show a too strong seasonal cycle at high latitudes.

Srijana Lama

and 5 more

Marine Remaud

and 16 more

We present a comparison of atmospheric transport model simulations for carbonyl sulfide (COS), within the framework of the ongoing atmospheric tracer transport model intercomparison project “TransCom”. Seven atmospheric transport models participated in the inter-comparison experiment and provided simulations of COS mixing ratios in the troposphere over a 9-year period (2010–2018), using prescribed state-of-the-art surface fluxes for various components of the atmospheric COS budget: biospheric sink, oceanic source, sources from fire and industry. Since the biosphere is the largest sink of COS, we tested sink estimates produced by two different biosphere models. The main goals of TransCom-COS are (a) to investigate the impact of the transport uncertainty and emission distribution in simulating the spatio-temporal variability of COS mixing ratios in the troposphere, and (b) to assess the sensitivity of simulated tropospheric COS mixing ratios to the seasonal and diurnal variability of the COS biosphere fluxes. To this end, a control case with state-of-the-art seasonal fluxes of COS was constructed. Models were run with the same fluxes and without chemistry to isolate transport differences. Further, two COS flux scenarios were compared: one using a biosphere flux with a monthly time resolution and the other using a biosphere flux with a three-hourly time resolution. In addition, we investigated the sensitivity of the simulated concentrations to different biosphere fluxes and to indirect oceanic emissions through dimethylsulfide (DMS) and carbon disulfide (CS2). The modelled COS mixing ratios were assessed against in-situ observations from surface stations and aircraft.

Nicholas C Parazoo

and 12 more

The ACT-America Earth Venture mission conducted five airborne campaigns across four seasons from 2016-2019, to study the transport and fluxes of Greenhouse gases across the eastern United States (US). Unprecedented spatial sampling of atmospheric tracers (CO2, CO, and COS) related to biospheric processes offers opportunities to improve our qualitative and quantitative understanding of seasonal and spatial patterns of biospheric carbon uptake. Here, we examine co-variation of boundary layer enhancements of CO2, CO, and COS across three diverse regions: the crop-dominated Midwest, evergreen-dominated South, and deciduous broadleaf-dominated Northeast. To understand the biogeochemical processes controlling these tracers, we compare the observed co-variation to simulated co-variation resulting from model- and satellite- constrained surface carbon fluxes. We found indication of a common terrestrial biogenic sink of CO2 and COS and secondary production of CO from biogenic sources in summer throughout the eastern US. Stomatal conductance likely drives fluxes through diffusion of CO2 and COS into leaves and emission of biogenic volatile organic compounds into the atmosphere. ACT-America airborne campaigns filled a critical sampling gap in the southern US, providing information about seasonal carbon uptake in southern temperate forests, and demanding a deeper investigation of underlying biological processes and climate sensitivities. Satellite- constrained carbon fluxes capture much of the observed seasonal and spatial variability, but underestimate the magnitude of net CO2 and COS depletion in the Southeast, indicating a stronger than expected net sink in late summer.

Auke Visser

and 5 more

Dry deposition is an important ozone sink that impacts ecosystem carbon and water cycling. Ozone dry deposition in forests is regulated by vertical transport, stomatal uptake, and non-stomatal processes including chemical removal. However, accurate descriptions of these processes in deposition parameterizations are hindered by sparse observational constraints on individual sink terms. Here we quantify the contribution of canopy-atmosphere turbulent exchange and chemical ozone removal by soil-emitted nitric oxide (NO) to ozone deposition in a North-Italian broadleaf deciduous forest. We apply a multi-layer canopy exchange model to interpret campaign observations of nitrogen oxides (NOx=NO+NO2) and ozone exchange above and inside the forest canopy. Two state-of-science parameterizations of in-canopy vertical diffusivity, based on above-canopy wind speed or stability, do not reproduce the observed exchange suppressed by canopy-top radiative heating, resulting in overestimated dry deposition velocities of 10-19\% during daytime. Applying observation-derived vertical diffusivities in our simulations largely resolves this overestimation. Soil emissions are an important NOx source despite the observed high background NOx levels. Soil NOx emissions decrease the gradient between canopy and surface layer NOx mixing ratios, which suppresses simulated NOx deposition by 80% compared to a sensitivity simulation without soil emissions. However, a sensitivity analysis shows that the enhanced chemical ozone sink by reaction with soil-emitted NO is offset by increased vertical ozone transport from aloft and suppressed dry deposition. Our results highlight the need for targeted observations of non-stomatal ozone removal and turbulence-resolving deposition simulations to improve quantification and model representation of forest ozone deposition.