The Indo-Gangetic Plain (IGP) is one of the dominant sources of air pollution worldwide. During winter, the variations in planetary boundary layer (PBL) height, driven by a strong radiative thermal inversion, affect the regional air pollution dispersion. To date, measurements of aerosol-water vapour interactions, especially cloud condensation nuclei (CCN) activity, are limited in the Indian sub-continent, causing large uncertainties in the radiative forcing estimates of aerosol-cloud interactions. We present the results of a one-month field campaign (February-March 2018) in the megacity, Delhi, a significant polluter in the IGP. We measured the composition of fine particulate matter (PM1) and size-resolved CCN properties over a wide range of water vapour supersaturations. The analysis includes PBL modelling, backward trajectories, and fire spots to elucidate the influence of PBL and air mass origins on the aerosols. The aerosol properties depended strongly on the PBL height, and a simple power-law fit could parameterize the observed correlations of PM1 mass, aerosol particle number, and CCN number with PBL height, indicating PBL induced changes in aerosol accumulation. The low inorganic mass fractions, low aerosol hygroscopicity and high externally mixed weakly CCN-active particles under low PBL height (<100 m) indicated the influence of the PBL on aerosol aging processes. In contrast, aerosol properties did not depend strongly on air mass origins or wind direction, implying that the observed aerosol and CCN are from local emissions. An error function could parameterize the relationship between CCN number and supersaturation throughout the campaign.