Vegetation plays a fundamental role in modulating the exchange of water, energy, and carbon fluxes between the land and the atmosphere. These exchanges are modelled by Land Surface Models (LSMs), which are an essential part of numerical weather prediction and data assimilation. However, most current LSMs implemented specifically in weather forecasting systems use climatological vegetation indices, and land use/land cover datasets in these models are often outdated. In this study, we update land surface data in the ECMWF land surface modelling system ECLand using Earth observation-based time varying leaf area index and land use/land cover data, and evaluate the impact of vegetation dynamics on model performance. The performance of the simulated latent heat flux and soil moisture is then evaluated against global gridded observation-based datasets. Updating the vegetation information does not always yield better model performances because the model’s parameters are adapted to the previously employed land surface information. Therefore we recalibrate key soil and vegetation-related parameters at individual grid cells to adjust the model parameterizations to the new land surface information. This substantially improves model performance and demonstrates the benefits of updated vegetation information. Interestingly, we find that a regional parameter calibration outperforms a globally uniform adjustment of parameters, indicating that parameters should sufficiently reflect spatial variability in the land surface. Our results highlight that newly available Earth-observation products of vegetation dynamics and land cover changes can improve land surface model performances, which in turn can contribute to more accurate weather forecasts.

Chunhui Zhan

and 7 more

The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate change, is primarily attributed to the CO₂ fertilization effect on global gross primary productivity (GPP). However, direct observational evidence of this effect remains scarce, hampered by challenges in disentangling the CO₂ fertilization effect from other long-term drivers, particularly climatic changes. Here, we introduce a novel statistical approach to separate the CO₂ fertilization effect on GPP and daily maximum net ecosystem production (NEPmax) using eddy covariance records across 38 extratropical forest sites. We find the median stimulation rate of GPP and NEPmax to be 16.4 ± 4% and 17.2 ± 4% per 100 ppm increase in atmospheric CO₂ across these sites, respectively. To validate the robustness of our findings, we test our statistical method using factorial simulations of an ensemble of process-based land surface models. We acknowledge that additional factors, including nitrogen deposition and land management, may impact plant productivity, potentially confounding the attribution to the CO₂ fertilization effect. Assuming these site-specific effects offset to some extent across sites as random factors, the estimated median value still reflects the strength of the CO₂ fertilization effect. However, disentanglement of these long-term effects, often inseparable by timescale, requires further causal research. Our study provides direct evidence that the photosynthetic stimulation is maintained under long-term CO₂ fertilization across multiple eddy covariance sites. Such observation-based quantification is key to constraining the long-standing uncertainties in the land carbon cycle under rising CO₂ concentrations.