Yujie Wang

and 8 more

Recent progress in satellite observations has provided unprecedented opportunities to monitor vegetation activity on the global scale. However, a major challenge in fully utilizing remotely sensed data to constrain land surface models (LSMs) lies in inconsistencies between simulated and observed quantities. Transpiration and gross primary productivity (GPP) that traditional LSMs simulate are not directly measurable from space and they are inferred from spaceborne observations using assumptions that are inconsistent with those of the LSMs, whereas canopy reflectance and fluorescence spectra that satellites can detect are not modeled by traditional LSMs. To bridge these quantities, we present the land model developed within the Climate Modeling Alliance (CliMA), which simulates global-scale GPP, transpiration, and hyperspectral canopy radiative transfer (RT). Thus, CliMA Land can predict any vegetation index or outgoing radiance, including solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and near infrared reflectance of vegetation (NIRv) for any given measurement geometry. Even without parameter optimization, the modeled spatial patterns of CliMA Land GPP, SIF, NDVI, EVI, and NIRv correlate significantly with existing observational products. CliMA Land is also very useful in its high temporal resolution, e.g., providing insights into when GPP, SIF, and NIRv diverge. Based on comparisons between models and observations, we propose ways to improve future land modeling regarding data processing and model development.

Junjie Liu

and 4 more

Since the 1960s, carbon cycling in the high-latitude northern forest (HLNF) has experienced dramatic changes: most of the forest is greening and net carbon uptake from the atmosphere has increased. During the same time period, the COseasonal cycle amplitude (SCA) has almost doubled. Disentangling complex processes that drive these changes has been challenging. In this study, we substitute spatial sensitivity to temperature for time to quantify the impact of temperature increase on Gross Primary Production (GPP), total ecosystem respiration (TER), the fraction of Photosynthetic Active Radiation (fPAR), and the resulted contribution of these changes in amplifying the COSCA over the HLNF since 1960s. We use the spatial heterogeneity of GPP inferred from solar-induced chlorophyll Fluorescence in combination with net ecosystem exchange (NEE) inferred from column COobservations made between 2015 and 2017 from NASA’s Orbiting Carbon Observatory -2. We find that three quarters of the spatial variations in GPP and in the fPAR absorbed by the HLNF can be explained by the spatial variation in the growing season mean temperature (GSMT). The long term hindcast captures both the magnitude and spatial variability of the trends in observed fPAR. We estimate that between 1960 and 2010, the increase in GSMT enhanced both GPP and the SCA of NEE by ~20%. The calculated enhancement of NEE due to increase in GSMT contributes 56–72% of the trend in the CO SCA at high latitudes, much larger than simulations by most biogeochemical models.