Siyuan Wang

and 5 more

Natural and anthropogenic disturbances act as important drivers of tree mortality, shaping the structure, composition and biomass distribution of forests. Disturbance regimes may emerge from different characteristics of disturbance events over time and space. We design a model- based experiment to investigate the links between disturbance regimes at the landscape scale and spatial features of biomass patterns. The effects on biomass of a wide range of disturbance regimes are simulated by varying three different parameters, i.e. μ (probability scale), α (clustering degree), and β (intensity slope) that shape the extent, frequency, and intensity of disturbance events, respectively. A simple dynamic carbon cycle model is used to simulate 200 years of plant biomass dynamics in response to circa +2000 different disturbance regimes, depending on the different combinations of μ, α, and β. Each parameter combination yields a spatially explicit estimate of plant biomass for which sixteen synthesis statistics are estimated on the spatial distributions of biomass, including information-based and texture features. Based on a multi-output regression approach we link these synthesis statistics with additional gross primary production (GPP) constraints to retrieve the three disturbance parameters. In doing so we evaluate the confidence in inferring disturbance regimes from spatial distributions of biomass. Our results show that all three parameters can be confidently retrieved. The Nash-Sutcliffe efficiency for the prediction of the μ, α, and β is 97.3%, 96.6%, and 97.9%, respectively. A feature importance analysis reveals that the distribution statistics dominate the prediction of μ and β, while features quantifying texture have a stronger connection with α. Overall, this study clarifies the association between biomass patterns emerging from different underlying disturbance regimes, while overcoming the previously found equifinality between mortality rates and total biomass. Given the links between decadal vegetation dynamics and the uncertainties in the role of terrestrial ecosystems in the global biogeochemical cycles, a better understanding and the quantification of disturbance regimes would improve our current understanding of controls and feedback at the biosphere-atmosphere interface in the current Earth system models.

Ranit De

and 34 more

A long-standing challenge in studying the global carbon cycle has been understanding the factors controlling inter–annual variation (IAV) of carbon fluxes related to vegetation photosynthesis and respiration, and improving their representations in existing biogeochemical models. Here, we compared an optimality-based mechanistic model and a semi-empirical light use efficiency model to understand how current models can be improved to simulate IAV of gross primary production (GPP). Both models simulated hourly GPP and were parameterized for (1) each site–year, (2) each site with an additional constraint on IAV (CostIAV), (3) each site, (4) each plant–functional type, and (5) globally. This was followed by forward runs using calibrated parameters, and model evaluations at different temporal scales across 198 eddy covariance sites. Both models performed better on hourly scale than annual scale for most sites. Specifically, the mechanistic model substantially improved when drought stress was explicitly included. Most of the variability in model performances was due to model types and parameterization strategies. The semi-empirical model produced statistically better hourly simulations than the mechanistic model, and site–year parameterization yielded better annual performance for both models. Annual model performance did not improve even when parameterized using CostIAV. Furthermore, both models underestimated the peaks of diurnal GPP in each site–year, suggesting that improving predictions of peaks could produce a comparatively better annual model performance. GPP of forests were better simulated than grassland or savanna sites by both models. Our findings reveal current model deficiencies in representing IAV of carbon fluxes and guide improvements in further model development.

Chunhui Zhan

and 7 more

The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate change, is primarily attributed to the CO₂ fertilization effect on global gross primary productivity (GPP). However, direct observational evidence of this effect remains scarce, hampered by challenges in disentangling the CO₂ fertilization effect from other long-term drivers, particularly climatic changes. Here, we introduce a novel statistical approach to separate the CO₂ fertilization effect on GPP and daily maximum net ecosystem production (NEPmax) using eddy covariance records across 38 extratropical forest sites. We find the median stimulation rate of GPP and NEPmax to be 16.4 ± 4% and 17.2 ± 4% per 100 ppm increase in atmospheric CO₂ across these sites, respectively. To validate the robustness of our findings, we test our statistical method using factorial simulations of an ensemble of process-based land surface models. We acknowledge that additional factors, including nitrogen deposition and land management, may impact plant productivity, potentially confounding the attribution to the CO₂ fertilization effect. Assuming these site-specific effects offset to some extent across sites as random factors, the estimated median value still reflects the strength of the CO₂ fertilization effect. However, disentanglement of these long-term effects, often inseparable by timescale, requires further causal research. Our study provides direct evidence that the photosynthetic stimulation is maintained under long-term CO₂ fertilization across multiple eddy covariance sites. Such observation-based quantification is key to constraining the long-standing uncertainties in the land carbon cycle under rising CO₂ concentrations.
Vegetation plays a fundamental role in modulating the exchange of water, energy, and carbon fluxes between the land and the atmosphere. These exchanges are modelled by Land Surface Models (LSMs), which are an essential part of numerical weather prediction and data assimilation. However, most current LSMs implemented specifically in weather forecasting systems use climatological vegetation indices, and land use/land cover datasets in these models are often outdated. In this study, we update land surface data in the ECMWF land surface modelling system ECLand using Earth observation-based time varying leaf area index and land use/land cover data, and evaluate the impact of vegetation dynamics on model performance. The performance of the simulated latent heat flux and soil moisture is then evaluated against global gridded observation-based datasets. Updating the vegetation information does not always yield better model performances because the model’s parameters are adapted to the previously employed land surface information. Therefore we recalibrate key soil and vegetation-related parameters at individual grid cells to adjust the model parameterizations to the new land surface information. This substantially improves model performance and demonstrates the benefits of updated vegetation information. Interestingly, we find that a regional parameter calibration outperforms a globally uniform adjustment of parameters, indicating that parameters should sufficiently reflect spatial variability in the land surface. Our results highlight that newly available Earth-observation products of vegetation dynamics and land cover changes can improve land surface model performances, which in turn can contribute to more accurate weather forecasts.

Hoontaek Lee

and 7 more

The spatial contribution to the global land-atmosphere carbon dioxide (CO\textsubscript{2}) exchange is crucial in understanding and projecting the global carbon cycle, yet different studies diverge on the dominant regions. Informing land models with observational data is a promising way to reduce the parameter and structural uncertainties and advance our understanding. Here, we develop a parsimonious diagnostic process-based model of land carbon cycles, constraining parameters with observation-based products. We compare CO\textsubscript{2} flux estimates from our model with observational constraints and Trends in Net Land-Atmosphere Carbon Exchange (TRENDY) model ensemble to show that our model reasonably reproduces the seasonality of net ecosystem exchange (NEE) and GPP and interannual variability (IAV) of NEE. Finally, we use the developed model, TRENDY models, and observational constraints to attribute variability in global NEE and gross primary productivity (GPP) to regional variability. The attribution analysis confirms the dominance of Northern temperate and boreal regions in the seasonality of CO\textsubscript{2} fluxes. Regarding NEE IAV, we identify a significant contribution from tropical savanna regions as previously perceived. Furthermore, we highlight that tropical humid regions are also identified as at least equally relevant contributors as semi-arid regions. At the same time, the largest uncertainty among ensemble members of NEE constraint and TRENDY models in the tropical humid regions underscore the necessity of better process understanding and more observations in these regions. Overall, our study identifies tropical humid regions as key regions for global land-atmosphere CO\textsubscript{2} exchanges and the inter-model spread of its modeling.

Çağlar Küçük

and 5 more

Hydrological interactions between vegetation, soil, and topography are complex, and heterogeneous in semi-arid landscapes. This along with data scarcity poses challenges for large-scale modelling of vegetation-water interactions. Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km spatial resolution for ecohydrological analysis. Their spatial patterns are based on Fractional Vegetation Cover (FVC) time series and emphasise limiting conditions of the seasonal wet to dry transition: the minimum and maximum FVC of temporal record, the FVC decay rate and the FVC integral over the decay period. We investigate the relevance of these metrics for large scale ecohydrological studies by assessing their co-variation with soil moisture, and with topographic, soil, and vegetation factors. Consistent with our initial hypothesis, FVC minimum and maximum increase with soil moisture, while the FVC integral and decay rate peak at intermediate soil moisture. We find evidence for the relevance of topographic moisture variations in arid regions, which, counter-intuitively, is detectable in the maximum but not in the minimum FVC. We find no clear evidence for wide-spread occurrence of the “inverse texture effect”’ on FVC. The FVC integral over the decay period correlates with independent data sets of plant water storage capacity or rooting depth while correlations increase with aridity. In arid regions, the FVC decay rate decreases with canopy height and tree cover fraction as expected for ecosystems with a more conservative water-use strategy. Thus, our observation-based products have large potential for better understanding complex vegetation–water interactions from regional to continental scales.

Reda ElGhawi

and 6 more

The process of evapotranspiration transfers water vapour from vegetation and soil surfaces to the atmosphere, the so-called latent heat flux (𝑄 LE), and thus crucially modulates Earth’s energy, water, and carbon cycles. Vegetation controls 𝑄 LE through regulating the leaf stomata (i.e., surface resistance 𝑟 s) and through altering surface roughness (aerodynamic resistance 𝑟 a). Estimating 𝑟 s and 𝑟 a across different vegetation types proves to be a key challenge in predicting 𝑄 LE. Here, we propose a hybrid modeling approach (i.e., combining mechanistic modeling and machine learning) for 𝑄 LE where neural networks independently learn the resistances from observations as intermediate variables. In our hybrid modeling setup, we make use of the Penman-Monteith equation based on the Big Leaf theory in conjunction with multi-year flux measurements across different forest and grassland sites from the FLUXNET database. We follow two conceptually different strategies to constrain the hybrid model to control for equifinality arising when estimating the two resistances simultaneously. One strategy is to impose an a priori constraint on 𝑟 a based on our mechanistic understanding (theory-driven strategy), while the other strategy makes use of more observational data and adds a constraint in predicting 𝑟 a through multi-task learning of the latent as well as the sensible heat flux (𝑄 H ; data-driven strategy). Our results show that all hybrid models exhibit a fairly high predictive skill for the target variables with 𝑅 2 = 0.82-0.89 for grasslands and 𝑅 2 = 0.70-0.80 for forests sites at the mean diurnal scale. The predictions of 𝑟 s and 𝑟 a show physical consistency across the two regularized hybrid models, but are physically implausible in the under-constrained hybrid model. The hybrid models are robust in reproducing consistent results for energy fluxes and resistances across different scales (diurnal, seasonal, interannual), reflecting their ability to learn the physical dependence of the target variables on the meteorological inputs. As a next step, we propose to test these heavily observation-informed parameterizations derived through hybrid modeling as a substitute for overly simple ad hoc formulations in Earth system models.

Chunhui Zhan

and 7 more

Elevated atmospheric CO2 (eCO2) influences the carbon assimilation rate and stomatal conductance of plants, and thereby can affect the global cycles of carbon and water. However, the extent to which these physiological effects of eCO2 influence the land-atmosphere exchange of carbon and water is uncertain. In this study, we aim at developing a method to detect the emergence of the physiological CO2 effects on various variables related to carbon and water fluxes. We use a comprehensive process-based land surface model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) to simulate the leaf-level effects of increasing atmospheric CO2 concentrations and their century-long propagation through the terrestrial carbon and water cycles across different climate regimes and biomes. We then develop a statistical method based on the signal-to-noise ratio to detect the emergence of the eCO2 effects. The signal in gross primary production (GPP) emerges at relatively low eCO2 (Δ[CO2] ~ 20 ppm) where the leaf area index (LAI) is relatively high. Compared to GPP, the eCO2 effect causing reduced 28 transpiration water flux (normalized to leaf area) emerges only at relatively high CO2 increase (Δ[CO2] >> 40 ppm), due to the high sensitivity to climate variability and thus lower signal-to-noise ratio. In general, the response to eCO2 is detectable earlier for variables of the carbon cycle than the water cycle, when plant productivity is not limited by climatic constraints, and stronger in forest-dominated rather than in grass- dominated ecosystems. Our results provide a step towards when and where we expect to detect physiological CO2 effects in in-situ flux measurements, how to detect them and encourage future efforts to improve the understanding and quantification of these effects in observations of terrestrial carbon and water dynamics.