Martin Schoenball

and 14 more

Enhanced Geothermal Systems could provide a substantial contribution to the global energy demand if their implementation could overcome inherent challenges. Examples are insufficient created permeability, early thermal breakthrough, and unacceptable induced seismicity. Here we report on the seismic response of a meso-scale hydraulic fracturing experiment performed at 1.5 km depth at the Sanford Underground Research Facility. We have measured the seismic activity by utilizing a novel 100 kHz, continuous seismic monitoring system deployed in six 60 m-length monitoring boreholes surrounding the experimental domain in 3-D. The achieved location uncertainty was on the order of 1 m, and limited by the signal-to-noise ratio of detected events. These uncertainties were corroborated by detections of fracture intersections at the monitoring boreholes. Three intervals of the dedicated injection borehole were hydraulically stimulated by water injection at pressures up to 33 MPa and flow rates up to 5 L/min. We located 1933 seismic events during several injection periods. The recorded seismicity delineates a complex fracture network comprised of multi-strand hydraulic fractures and shear-reactivated, pre-existing planes of weakness that grew unilaterally from the point of initiation. We find that heterogeneity of stress dictates the outcome of hydraulic stimulations, even when relying on theoretically well-behaved hydraulic fractures. Once hydraulic fractures intersected boreholes, the boreholes acted as a pressure relief and fracture propagation ceased. In order to create an efficient sub-surface heat exchanger, production boreholes should not be drilled before the end of hydraulic stimulations.

Feng Cheng

and 5 more

The Imperial Valley, CA, is a tectonically active transtensional basin located south of the Salton Sea; the area hosts numerous geothermal fields, including significant hidden hydrothermal resources without surface manifestations. Development of inexpensive, rugged, and highly-sensitive exploration techniques for undiscovered geothermal systems is critical for accelerating geothermal power deployment as well as unlocking a low-carbon energy future. We present a case study utilizing distributed acoustic sensing (DAS) and ambient noise interferometry for geothermal reservoir imaging utilizing an unlit fiber-optic telecommunication infrastructure (dark fiber). The study utilizes passive DAS data acquired from early November 2020 over a ~28-kilometer section of fiber from Calipatria, CA to Imperial, CA. We apply ambient noise interferometry to retrieve coherent signals from DAS records, and develop a spatial stacking technique to attenuate effects from persistent localized noise sources and to enhance retrieval of coherent surface waves. As a result, we are able to obtain high-resolution two-dimensional (2D) S wave velocity (Vs) structure to 3 km depth based on joint inversion of both the fundamental and higher overtones. We observe a previously unmapped high Vs and low Vp/Vs ratio feature beneath the Brawley geothermal system that we interpret to be a zone of hydrothermal mineralization and lower porosity. This interpretation is consistent with a host of other measurements including surface heat flow, gravity anomalies, and available borehole wireline data. These results demonstrate the potential utility of DAS deployed on dark fiber for geothermal system exploration and characterization in the appropriate contexts.