loading page

Radar characterization of ice crystal orientation fabric and anisotropic rheology within an Antarctic ice stream
  • +2
  • Thomas Jordan,
  • Carlos Martin,
  • Alex Brisbourne,
  • Dustin Schroeder,
  • Andrew Smith
Thomas Jordan
University of Bristol

Corresponding Author:[email protected]

Author Profile
Carlos Martin
British Antarctic Survey
Author Profile
Alex Brisbourne
British Antarctic Survey
Author Profile
Dustin Schroeder
Stanford
Author Profile
Andrew Smith
British Antarctic Survey
Author Profile

Abstract

We use polarimetric radar sounding to investigate variation in ice crystal orientation fabric within the near-surface (top 40-300 m) of Rutford Ice Stream, West Antarctica. To assess the influence of the fabric on ice flow, we use an analytical model to derive anisotropic enhancements of the flow law from the fabric measurements. In the shallowest ice (40-100 m) the azimuthal fabric orientation is consistent with flow-induced development and correlates with the surface strain field. Notably, toward the ice-stream margins, both the horizontal compression angle and fabric orientation tend toward 45 degrees relative to ice flow. This result is consistent with theoretical predictions of flow-induced fabric under simple shear, but to our knowledge has never been observed. The fabric orientation in deeper ice (100-300 m) is significantly misaligned with shallower ice in some locations, and therefore inconsistent with the local surface strain field. This result represents a new challenge for ice flow models which typically infer basal properties from the surface conditions assuming simplified vertical variation of ice flow. Our technique retrieves azimuthal variations in fabric but is insensitive to vertical variation, and we therefore constrain the fabric and rheology within two end-members: a vertical girdle or a horizontal pole. Our hypotheses are that fabric near the center of the ice-stream tends to a vertical girdle that enhances horizontal compression, and near the ice-stream margins tends to a horizontal pole that enhances lateral shear.