David Schlaphorst

and 21 more

The crust and upper mantle structure of the Greater and Lesser Antilles Arc provides insights into key subduction zone processes in a unique region of slow convergence of old slow-spreading oceanic lithosphere. We use ambient noise tomography gathered from island broadband seismic stations and the temporary ocean bottom seismometer network installed as part of the VoiLA experiment to map crustal and upper mantle shear-wave velocity of the eastern Greater Antilles and the Lesser Antilles Arc. We find sediment thickness, based on the depth to the 2.0 km/s contour in the Grenada and Tobago basins up to 15 km in the south, with thinner sediments near the arc and to the north. We observe thicker crust, based on the depth to the 4.0 km/s velocity contour, beneath the arc platforms with the greatest crustal thickness of around 30 km, likely related to crustal addition from arc volcanism through time. There are distinct low velocity zones (4.2-4.4 km/s) in the mantle wedge (30-50 km depth), beneath the Mona Passage, Guadeloupe-Martinique, and the Grenadines. The Mona passage mantle anomaly may be related to ongoing extension there, while the Guadeloupe-Martinique and Grenadine anomalies are likely related to fluid flux, upwelling, and/or partial melt related to nearby slab features. The location of the Guadeloupe-Martinique anomaly is slightly to the south of the obliquely subducted fracture zones. This feature could be explained by either three-dimensional mantle flow, a gap in the slab, variable slab hydration, and/or melt dynamics including ponding and interactions with the upper plate.
The gravitational pulls from the moon and the sun result in tidal forces which influence both Earth’s solid and water mass. These stresses are periodically added to the tectonic ones and may become sufficient for initiating rupture in fault systems critically close to failure. Previous research indicates correlations between increased seismicity rates and low tides for mid-ocean, fast-spreading ridges in Pacific ocean. Here, we present a microseismicity dataset (4719 events) from an Ocean Bottom Seismometer (OBS) network at the equatorial Mid-Atlantic Ridge, suggesting a significant correlation between seismic potential and tidal forces. We show that low as well as decreasing ocean water level results in elevated seismicity rates and lower b-values, translated into considerably increased probabilities of stronger event occurrence at or towards low tides. In addition, seismic bursts (enhanced activity rate clusters), occurring at rates fairly above the reference seismicity, are exclusively present during either high extensional stresses or high extensional stress rates. Our results exhibit remarkable statistical significance, supporting the previous findings for tidal triggering at low tides within normal-faulting regimes and extending the range of observations to slow-spreading ridges. Observed triggering of slip on low angle faults at low tides is predicted by Coulomb stress modelling. The triggering of slip on high angle faults observed here, is not easily explained without another factor. It may be related to fatigue and/or the presence of a shallow magma body beneath the ridge, as suggested by previous seismic imaging in the region.

David Schlaphorst

and 6 more

Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly useful due to their relatively simple structure in comparison to continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there have not been many studies of slower spreading centres. Here we present the first local seismicity catalogue based on event data recorded by a temporary broadband network of 39 ocean bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from March 2016 to March 2017. Locations are constrained by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. Depths and focal mechanisms of the larger events are refined using deviatoric moment tensor inversion. We find a total of 972 events in the area. Most of the seismicity is located at the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterised by normal faulting and most of the transform events are characterised by strike slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600˚C-isotherm from a simple thermal model. The deeper events could be explained by the control of seawater infiltration on the brittle failure limit.