Renato K. Braghiere

and 12 more

Ann Raiho

and 14 more

The retrival algorithms used for optical remote sensing satellite data to estimate Earth’s geophysical properties have specific requirements for spatial resolution, temporal revisit, spectral range and resolution, and instrument signal to noise ratio (SNR) performance to meet science objectives. Studies to estimate surface properties from hyperspectral data use a range of algorithms sensitive to various sources of spectroscopic uncertainty, which are in turn influenced by mission architecture choices. Retrieval algorithms vary across scientific fields and may be more or less sensitive to mission architecture choices that affect spectral, spatial, or temporal resolutions and spectrometer SNR. We used representative remote sensing algorithms across terrestrial and aquatic study domains to inform aspects of mission design that are most important for impacting accuracy in each scientific area. We simulated the propagation of uncertainties in the retrieval process including the effects of different instrument configuration choices. We found that retrieval accuracy and information content degrade consistently at >10 nm spectral resolution, >30 m spatial resolution, and >8 day revisit. In these studies, the noise reduction associated with lower spatial resolution improved accuracy vis à vis high spatial resolution measurements. The interplay between spatial resolution, temporal revisit and SNR can be quantitatively assessed for imaging spectroscopy missions and used to identify key components of algorithm performance and mission observing criteria.

Natalie Queally

and 6 more

Bidirectional reflectance distribution function (BRDF) effects are a persistent issue for the analysis of vegetation in airborne imaging spectroscopy data, especially when mosaicking results from adjacent flightlines. With the advent of large airborne imaging efforts from NASA and the US National Ecological Observatory Network (NEON), there is increasing need for methods that are both flexible and automatable across numerous images with diverse land cover. FlexBRDF corrects for BRDF effects in groups of flightlines, with key user-selectable features including kernel selection, land cover stratification (we employ NDVI), and use of a reference solar zenith angle (SZA). We demonstrate FlexBRDF using a series of nine long (150-400 km) AVIRIS-Classic flightlines collected on 22 May 2013 over Southern California, where rough terrain, diverse land cover, and a wide range of solar illumination yield significant BRDF effects, and then test the approach on additional AVIRIS-Classic data from California, AVIRIS-Next Generation data from the Arctic and India, and NEON imagery from Wisconsin. Based on comparisons of overlap areas between adjacent flightlines, correction algorithms built from multiple flightlines concurrently performed better than corrections built for single images (RMSE improved up to 2.3% and mean absolute deviation 2.5%). Standardization to a common SZA among a group of flightlines also improved performance. While BRDF corrections tailored to individual sites may be preferred for local studies, FlexBRDF is compatible with bulk processing of large datasets covering diverse land cover needed for calibration/validation of forthcoming spaceborne imaging spectroscopy missions.

Kerry Cawse-Nicholson

and 10 more

High-resolution space-based spectral imaging of the Earth’s surface delivers critical information for monitoring changes in the Earth system as well as resource management and utilization. Orbiting spectrometers are built according to multiple design parameters, including ground sampling distance (GSD), spectral resolution, temporal resolution, and signal-to-noise. The different applications drive divergent instrument designs, so optimization for wide-reaching missions is complex. The Surface Biology and Geology component of NASA’s Earth System Observatory addresses science questions and meets applications needs across diverse fields, including terrestrial and aquatic ecosystems, natural disasters, and the cryosphere. The algorithms required to generate the geophysical variables from the observed spectral imagery each have their own inherent dependencies and sensitivities, and weighting these objectively is challenging. Here, we introduce intrinsic dimensionality (ID), a measure of information content, as an applications-agnostic, data-driven metric to quantify performance sensitivity to various design parameters. ID is computed through the analysis of the eigenvalues of the image covariance matrix, and can be thought of as the number of significant principal components. This metric is extremely powerful for quantifying the information content in high-dimensional data, such as spectrally resolved radiances and their changes over space and time. We find that the intrinsic dimensionality decreases for coarser GSD, decreased spectral resolution and range, less frequent acquisitions, and lower signal-to-noise levels. This decrease in information content has implications for all derived products. Intrinsic dimensionality is simple to compute, providing a single quantitative standard to evaluate combinations of design parameters, irrespective of higher-level algorithms, products, applications, or disciplines.