Arlo Johnson

and 6 more

This study investigates the energy spectrum of electron microbursts observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics II (FIREBIRD-II, henceforth FIREBIRD) CubeSats. FIREBIRD is a pair of CubeSats, launched in January 2015 into a low Earth orbit, that focus on studying electron microbursts. High resolution electron data from FIREBIRD-II consists of 5 differential energy channels between 200 keV and 1 MeV and a $>$1 MeV integral channel. This covers an energy range that has not been well studied from low Earth orbit with good energy and time resolution. This study aims to improve understanding of the scattering mechanism behind electron microbursts by investigating their spectral properties and their relationship to the equatorial electron population under different geomagnetic conditions. Microbursts are identified in the region of the North Atlantic where FIREBIRD only observes electrons in the bounce loss cone. The electron flux and exponential energy spectrum of each microburst is calculated using a FIREBIRD instrument response modeled in GEANT4 (GEometry ANd Tracking) and compared with the near equatorial electron spectra measured by the Van Allen Probes. Microbursts occurring when the AE index is enhanced tend to carry more electrons with relatively higher energies. The microburst scattering mechanism is more efficient at scattering electrons with lower energies, however the difference in scattering efficiency between low and high energy is reduced during periods of enhanced AE.

Jerry Manweiler

and 9 more

Understanding the dynamical behavior of plasma and energetic particles in Earth’s inner magnetosphere requires carefully designed and calibrated instrumentation. The Van Allen Probes Mission included two instruments capable of measuring the proton distribution function in-situ. The Energetic Particle Composition and Thermal Plasma Suite (ECT) – Helium Oxygen, Proton, and Electron (HOPE) spectrometer (Spence et al., 2013; Funsten et al., 2013) used a top-hat detector designed to measure protons from the SC potential through 50 KeV in logarithmic energy steps. The Radiation Belt Storm Probes Ion Composition Detector (RBSPICE) instrument (Mitchell, 2013) used a time of flight and SSD detector design to measure protons from approximately 7 KeV through 650 KeV in logarithmic energy steps. Using the overlap of energy channels between the two instruments, the two instrument teams have worked diligently during the final Phase F of the mission to calibrate the observations so that a continuous distribution function can be resolved on nearly a spin-by-spin basis. During the life of these two instruments calibration changes have been required both on-board the spacecraft as well as within the final production datasets. Manweiler (2018) provided an early report on the intercalibration factors between HOPE and RBSPICE with a nominal factor of two difference between the proton data sets in the energy range between 7 and 50 KeV. With the final production of each of these data sets occurring in Fall 2021, both teams have been worked together to provide for an understanding of the required intercalibration factors to be used so that a full distribution function is available on a spin-by-spin basis. In this poster we report on the final efforts to provide this calibrated set of data products between the two instruments. Details of the intercalibration calculations are presented as well as year by year L by MLT maps of the factors required to match both datasets. Finally, we report on a supplementary data set that is to be made available which contains the spin-by-spin factors required to match the ECT/HOPE and RBSPICE/TOFxPH proton datasets. Funsten, H.O., et al. Space Sci Rev 179, 2013 Manweiler, J. W., et al., 2018 GEM Summer Workshop. Mitchell, D.G., et al., Space Sci. Rev., 179, 2013 Spence, H.E., et al. Space Sci Rev 179, 2013