Mary K. Hudson

and 6 more

As part of the Whole Heliosphere and Planetary Interactions (WHPI) initiative, contrasting drivers of radiation belt electron response at solar minimum have been investigated with MHD-test particle simulations for the 13 – 14 May 2019 CME-shock event and the 30 August – 3 September 2019 high speed solar wind interval. Both solar wind drivers produced moderate geomagnetic storms characterized by a minimum Dst = - 65 nT and - 52 nT, respectively, with the August - September event accompanied by prolonged substorm activity. The latter, with characteristic features of a CIR-driven storm, produced the hardest relativistic electron spectrum observed by Van Allen Probes during the last two years of the mission, ending in October 2019. MHD simulations were performed using both the Lyon-Fedder-Mobarry global MHD code and recently developed GAMERA model coupled to the Rice Convection Model, run with measured L1 solar wind input for both events studied, and coupled with test particle simulations, including an initial trapped and injected population. Initial electron phase space density (PSD) profiles used measurements from the Relativistic Electron Proton Telescope (REPT) and MagEIS energetic particle instruments on Van Allen Probes for test particle weighting and updating of the injected population at apogee. Results were compared directly with measurements and found to reproduce magnetopause loss for the CME-shock event and increased PSD for the CIR event. The two classes of events are contrasted for their impact on outer zone relativistic electrons near the end of Solar Cycle 24.

Ingmar Sandberg

and 13 more

Simon Wing

and 4 more

Jerry Manweiler

and 9 more

Understanding the dynamical behavior of plasma and energetic particles in Earth’s inner magnetosphere requires carefully designed and calibrated instrumentation. The Van Allen Probes Mission included two instruments capable of measuring the proton distribution function in-situ. The Energetic Particle Composition and Thermal Plasma Suite (ECT) – Helium Oxygen, Proton, and Electron (HOPE) spectrometer (Spence et al., 2013; Funsten et al., 2013) used a top-hat detector designed to measure protons from the SC potential through 50 KeV in logarithmic energy steps. The Radiation Belt Storm Probes Ion Composition Detector (RBSPICE) instrument (Mitchell, 2013) used a time of flight and SSD detector design to measure protons from approximately 7 KeV through 650 KeV in logarithmic energy steps. Using the overlap of energy channels between the two instruments, the two instrument teams have worked diligently during the final Phase F of the mission to calibrate the observations so that a continuous distribution function can be resolved on nearly a spin-by-spin basis. During the life of these two instruments calibration changes have been required both on-board the spacecraft as well as within the final production datasets. Manweiler (2018) provided an early report on the intercalibration factors between HOPE and RBSPICE with a nominal factor of two difference between the proton data sets in the energy range between 7 and 50 KeV. With the final production of each of these data sets occurring in Fall 2021, both teams have been worked together to provide for an understanding of the required intercalibration factors to be used so that a full distribution function is available on a spin-by-spin basis. In this poster we report on the final efforts to provide this calibrated set of data products between the two instruments. Details of the intercalibration calculations are presented as well as year by year L by MLT maps of the factors required to match both datasets. Finally, we report on a supplementary data set that is to be made available which contains the spin-by-spin factors required to match the ECT/HOPE and RBSPICE/TOFxPH proton datasets. Funsten, H.O., et al. Space Sci Rev 179, 2013 Manweiler, J. W., et al., 2018 GEM Summer Workshop. Mitchell, D.G., et al., Space Sci. Rev., 179, 2013 Spence, H.E., et al. Space Sci Rev 179, 2013