Tristan Horner

and 26 more

Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. How the biological pump operated in the past is therefore important for understanding past atmospheric carbon dioxide concentrations and Earth’s climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including: iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES-era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the elements that are least sensitive to productivity may be used to trace other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth’s climate history.
The carbonate chemistry of Arctic Ocean seafloor and its vulnerability to ocean acidification remains poorly explored. This limits our ability to quantify how biogeochemical processes and bottom water conditions shape sedimentary carbonate chemistry, and to predict how climate change may affect such biogeochemical processes at the Arctic Ocean seafloor. Here, we employ an integrated model assessment that explicitly resolves benthic pH and carbonate chemistry along a S—N transect in the Barents Sea. We identify the main drivers of observed carbonate dynamics and estimate benthic fluxes of dissolved inorganic carbon and alkalinity to the Arctic Ocean. We explore how bottom water conditions and in-situ organic matter degradation shape these processes and show that organic matter transformation strongly impacts pH and carbonate saturation (Ω) variations. Aerobic organic matter degradation drives a negative pH shift (pH < 7.6) in the upper 2—5 cm, producing Ω < 1. This causes shallow carbonate dissolution, buffering porewater pH to around 8.0. Organic matter degradation via metal oxide (Mn/Fe) reduction pathways further increases pH and carbonate saturation state. At the northern stations, where Ω > 5 at around 10–25 cm, model simulations result in authigenic carbonate precipitation. Furthermore, benthic fluxes of dissolved inorganic carbon (12.5—59.5 µmol cm−2 yr−1) and alkalinity (11.3—63.2 µmol cm−2 yr−1) are 2—3-fold greater in the northern sites due to greater carbonate dissolution. Our assessment is of significant relevance to predict how changes in the Arctic Ocean may shift carbon burial and pH buffering into the next century.

Christopher Hayes

and 28 more

Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230 Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global dataset of 230 Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive global maps of the burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), non-biogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of burial of the major components are mainly consistent with prior work, but the new quantitative estimates allow evaluations of global deep-sea burial. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides more detailed information on burial fluxes, which should lead to improvements in the understanding of how preservation affects these paleoproxies.