Daniel R Weimer

and 4 more

A chain of magnetometers has been placed in Antartica for comparisons with magnetic field measurements taken in the northern hemisphere. The locations were chosen to be on magnetic field lines that connect to magnetometers on the western coast of Greenland, despite the difficulty of reaching and working at such remote locations. We report on some basic comparisons of the similarities and differences in the conjugate measurements. Our results presented here confirm that the conjugate sites do have very similar (symmetric) magnetic perturbations in a handful of cases, as expected. Sign reversals are required for two components in order to obtain this agreement, which is not commonly known. More frequently, a strong Y component of the Interplanetary Magnetic Field (IMF) breaks the symmetry, as well as the unequal conductivities in the opposite hemispheres, as shown in two examples. In one event the IMF Y component reversed signs twice within two hours, while the magnetometer chains were approaching local noon. This switch provided an opportunity to observe the effects at the conjugate locations and to measure time lags. It was found that the magnetic fields at the most poleward sites started to respond to the sudden IMF reversals 18 min after the IMF reaches the bow shock, a measure of the time it takes for the electromagnetic signal to travel to the magnetopause, and then along magnetic field lines to the polar ionospheres. An additional 9 to 14 min is required for the magnetic perturbations to complete their transition.

Daniel R Weimer

and 3 more

We present results from a study of the time lags between changes in the energy flow into the polar regions and the response of the thermosphere to the heating. Measurements of the neutral density from the CHAMP and GRACE missions are used, along with calculations of the total Poynting flux entering the poles. During two major geomagnetic storms in 2003 these data show increased densities are first seen on the dayside edge of the auroral ovals after a surge in the energy input. At lower latitudes the densities reach their peak values on the dayside earlier than on the night side. A puzzling response seen in the CHAMP measurements during the November 2003 storm was that the density at a fixed location near the “Harang discontinuity’ remained at unusually low levels during three sequential orbit passes, while elsewhere the density increased. The entire database of measurements from the CHAMP and GRACE missions were used to derive maps of the density time lags across the globe. The maps show a large gradient between short and long time delays between $60^{\circ}$ and $30^{\circ}$ geographic latitude. They confirm the findings from the two storm periods, that near the equator the density on the dayside responds earlier than on the nightside. The time lags are longest near 18 – 20 h local time. The time lag maps could be applied to improve the accuracy of empirical thermosphere models, and developers of numerical models may find these results useful for comparisons with their calculations.

Daniel R Weimer

and 5 more

The EXospheric TEMeratures on a PoLyhedrAl gRid (EXTEMPLAR) method predicts the neutral densities in the thermosphere. The performance of this model has been evaluated through a comparison with the Air Force High Accuracy Satellite Drag Model (HASDM). The Space Environment Technologies (SET) HASDM database that was used for this test spans the 20 years 2000 through 2019, containing densities at 3 hour time intervals at 25 km altitude steps, and a spatial resolution of 10 degrees latitude by 15 degrees longitude. The upgraded EXTEMPLAR that was tested uses the newer Naval Research Laboratory MSIS 2.0 model to convert global exospheric temperature values to neutral density as a function of altitude. The revision also incorporated time delays that varied as a function of location, between the total Poynting flux in the polar regions and the exospheric temperature response. The density values from both models were integrated on spherical shells at altitudes ranging from 200 to 800 km. These sums were compared as a function of time. The results show an excellent agreement at temporal scales ranging from hours to years. The EXTEMPLAR model performs best at altitudes of 400 km and above, where geomagnetic storms produce the largest relative changes in neutral density. In addition to providing an effective method to compare models that have very different spatial resolutions, the use of density totals at various altitudes presents a useful illustration of how the thermosphere behaves at different altitudes, on time scales ranging from hours to complete solar cycles.

Guillaume Gronoff

and 19 more

The habitability of the surface of any planet is determined by a complex evolution of its interior, surface, and atmosphere. The electromagnetic and particle radiation of stars drive thermal, chemical and physical alteration of planetary atmospheres, including escape. Many known extrasolar planets experience vastly different stellar environments than those in our Solar system: it is crucial to understand the broad range of processes that lead to atmospheric escape and evolution under a wide range of conditions if we are to assess the habitability of worlds around other stars. One problem encountered between the planetary and the astrophysics communities is a lack of common language for describing escape processes. Each community has customary approximations that may be questioned by the other, such as the hypothesis of H-dominated thermosphere for astrophysicists, or the Sun-like nature of the stars for planetary scientists. Since exoplanets are becoming one of the main targets for the detection of life, a common set of definitions and hypotheses are required. We review the different escape mechanisms proposed for the evolution of planetary and exoplanetary atmospheres. We propose a common definition for the different escape mechanisms, and we show the important parameters to take into account when evaluating the escape at a planet in time. We show that the paradigm of the magnetic field as an atmospheric shield should be changed and that recent work on the history of Xenon in Earth’s atmosphere gives an elegant explanation to its enrichment in heavier isotopes: the so-called Xenon paradox.
The community has leveraged satellite accelerometer datasets in previous years to estimate neutral mass density and subsequently exospheric temperatures. We utilize derived temperature data and optimize a nonlinear machine-learned (ML) regression model to improve upon the performance of the linear EXTEMPLAR (EXospheric TEMPeratures on a PoLyherdrAl gRid) model. The newly developed EXTEMPLAR-ML model allows for exospheric temperature predictions at any location with a single model and provides performance improvements over its predecessor. We achieve a 4.2 K reduction in mean absolute error and a 3.42 K reduction in the standard deviation of the error. Like EXTEMPLAR, our model’s outputs can be utilized by the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended (NRLMSISE-00) model to more closely match satellite accelerometer-derived densities. We conducted two case studies where we compare the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) accelerometer-derived temperature and density estimates to NRLMSISE-00, EXTEMPLAR, and EXTEMPALR-ML during two major storm periods. The storm-time temperature comparison showed error reductions of 7-10% and 2-5% relative to NRLMSISE-00 and EXTEMPLAR, respectively, and the density comparison showed error reductions of 20-55% and 8-12%. We use Principal Component Analysis to identify the dominant modes of variability in the model over one solar cycle. This shows the model is dominantly driven by solar activity, and there is a strong latitudinal variation related to the Summer and Winter hemispheres.

Daniel R Weimer

and 1 more

We have used empirical models for electric potentials and the magnetic fields in both space and on the ground to obtain maps of the height-integrated Pedersen and Hall ionospheric conductivities at high latitudes. This calculation required use of both “curl-free” and “divergence-free” components of the ionospheric currents, with the former obtained from magnetic fields that are used in a model of the field-aligned currents. The second component is from the equivalent current, usually associated with Hall currents, derived from the ground-level magnetic field. Conductances were calculated for varying combinations of the Interplanetary magnetic field (IMF) magnitude and orientation angle, as well as the dipole tilt angle. The results show that reversing the sign of the Y component of the IMF produces substantially different conductivity patterns. The Hall conductivities are largest on the dawn side in the upward, Region 2 field-aligned currents. Low electric field strengths in the Harang discontinuity lead to inconclusive results near midnight. Calculations of the Joule heating, obtained from the electric field and both components of the ionospheric current, are compared with the Poynting flux in space. The maps show some differences, while their integrated totals match to within 1%. Some of the Poynting flux that enters the polar cap is dissipated as Joule heating within the auroral ovals, where the conductivity is enhanced, confirming the Poynting Flux theorem proposed by Richmond in 2010, for the first time using realistic electric fields, ionospheric currents, and conductivity.

Daniel Weimer

and 4 more

A high-resolution model of exospheric temperatures has been developed, with the objective of predicting the global values of exospheric temperatures with greater accuracy. From these temperatures, the neutral densities in the thermosphere can be calculated. This model is derived from measurements of the neutral densities on the CHAMP, GRACE, and Swarm satellites. These data were sorted into 1620, triangular cells on a spherical, polyhedral grid, using coordinates of geographic latitude and local solar time (longitude). A least-error fit of the data is used to obtain a separate set of regression coefficients for each grid cell. Several versions of model functions have been tested, using parameters such as the day-of-year, Universal Time, solar indices, and emissions from nitric oxide in the thermosphere, as measured with the SABER instrument on the TIMED satellite. Accuracy is improved with the addition of parameters that use the total Poynting flux flowing into the Northern and Southern hemispheres. This energy flux is obtained from the solar wind velocity and interplanetary magnetic, using an empirical model. Given a specific date, time, and other inputs, a global map of the exospheric temperature is obtained. These maps show significant variability in the polar regions, that are strongly modulated by the time-of-day, due to the rotation of the magnetic poles around the geographic pole. Values at specific locations are obtained using a triangular interpolation of these results. Comparisons of the exospheric temperatures from the model with neutral density measurements are shown to produce very good results.