Zachary Butterfield

and 6 more

As global observations of solar-induced chlorophyll fluorescence (SIF) have become available from multiple satellite platforms, SIF is increasingly used as a proxy for photosynthetic activity and ecosystem productivity. Because the relationship between SIF and gross primary productivity (GPP) depends on a variety of factors including ecosystem type and environmental conditions, it is necessary to study SIF observations across various spatiotemporal scales and ecosystems. To explore how SIF signals relate to productivity over a temperate deciduous forest, we deployed a PhotoSpec spectrometer system at the University of Michigan Biological Station AmeriFlux site (US-UMB) in the northern Lower Peninsula of Michigan during the 2018 and 2019 growing seasons. The PhotoSpec system consisted of two narrowband spectrometers, for the retrieval of SIF in the red (680-686 nm) and far-red (745-758 nm) regions of the electromagnetic spectrum, and a broadband spectrometer for the assessment of vegetation indices. We found that SIF correlated with GPP across diurnal and seasonal cycles, but that SIF irradiances were more strongly related to downwelling radiation than GPP. However, while this dependence of SIF on radiation obscured drought signals in SIF itself, we demonstrate that a SIF response to severe drought was apparent as a decrease in relative SIF. These results highlight the potential of SIF for detecting stress-induced losses in forest productivity. Additionally, we found that the red:far-red SIF ratio did not exhibit a response to drought stress, but was largely driven by seasonal and interannual changes in canopy structure, as well as by synoptic changes in downwelling radiation.

Morgan Loechli

and 10 more

Understanding terrestrial ecosystems and their response to anthropogenic climate change requires quantification of land-atmosphere carbon exchange. However, top-down and bottom-up estimates of large-scale land-atmosphere fluxes, including the northern extratropical growing season net flux (GSNF), show significant discrepancies. We develop a data-driven metric for the GSNF using atmospheric carbon dioxide concentration observations collected during the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Atmospheric Tomography Mission (ATom) flight campaigns. This aircraft-derived metric is bias corrected using three independent atmospheric inversion systems. We estimate the northern extratropical GSNF to be 5.7 ± 0.2 Pg C and use it to evaluate net biosphere productivity from the Coupled Model Intercomparison Project phase 5 and 6 (CMIP5 and CMIP6) models. While the model-to-model spread in the GSNF has decreased in CMIP6 models relative to that of the CMIP5 models, there is still disagreement on the magnitude and timing of seasonal carbon uptake with most models underestimating the GSNF and overestimating the length of the growing season relative to the observations. We also use an emergent constraint approach to estimate annual northern extratropical gross primary productivity to be 56 ± 15 Pg C, heterotrophic respiration to be 25 ± 11 Pg C, and net primary productivity to be 28 ± 10 Pg C. The flux inferred from these aircraft observations provides an additional constraint on large-scale, gross fluxes in prognostic Earth system models that may ultimately improve our ability to accurately predict carbon-climate feedbacks.