Michael Haigh

and 2 more

Ice sheets such as Pine Island and Thwaites Glaciers which terminate at their ice shelves in the eastern Amundsen Sea, West Antarctica, are losing mass faster than most others about the continent. The mass loss is due to basal melting, this affected by a deep current thought to be guided by bottom bathymetry that transports warm Circumpolar Deep Water (CDW) from the continental shelf break towards the ice shelves. This current and associated heat transport are controlled by the near-surface winds that vary on a range of timescales due to both anthropogenic and natural effects. In this study we use idealised models to reproduce essential features of the Amundsen Sea circulation and heat transport. The aim is to elucidate the role of bathymetric features in shaping the circulation and in enabling heat transport from the deep ocean onto the continental shelf. Bathymetric variations along the continental slope enhance on-shelf heat transport by inducing breaks in the Antarctic Slope Front that separates off-shelf CDW from the colder, fresher shelf waters. The idealised model results imply that a ridge that blocks deep westward inflow from the Bellingshausen Sea leads to the existence of a deep cyclonic circulation on the shelf. Part of this circulation is an eastward undercurrent that flows along the continental shelf break. The broader cyclonic circulation transports heat that has been recently fluxed onto the shelf towards the south. These fundamental investigations will help refine the aims of future fieldwork and modelling.

Hans Burchard

and 5 more

Basal melting of marine-terminating glaciers, through its impact on the forces that control the flow of the glaciers, is one of the major factors determining sea level rise in a world of global warming. Detailed quantitative understanding of dynamic and thermodynamic processes in melt-water plumes underneath the ice-ocean interface is essential for calculating the subglacial melt rate. The aim of this study is therefore to develop a numerical model of high spatial and process resolution to consistently reproduce the transports of heat and salt from the ambient water across the plume into the glacial ice. Based on boundary layer relations for momentum and tracers, stationary analytical solutions for the vertical structure of subglacial non-rotational plumes are derived, including entrainment at the plume base. These solutions are used to develop and test convergent numerical formulations for the momentum and tracer fluxes across the ice-ocean interface. After implementation of these formulations into a water-column model coupled to a second-moment turbulence closure model, simulations of a transient rotational subglacial plume are performed. The simulated entrainment rate of ambient water entering the plume at its base is compared to existing entrainment parameterizations based on bulk properties of the plume. A sensitivity study with variations of interfacial slope, interfacial roughness and ambient water temperature reveals substantial performance differences between these bulk formulations. An existing entrainment parameterization based on the Froude number and the Ekman number proves to have the highest predictive skill. Recalibration to subglacial plumes using a variable drag coefficient further improves its performance.
Sea-level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientist and practitioners, builds on a framework of discussing physical evidence to quantify high-end global SLR for practice. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2 ˚C in 2100 (SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for +5 ˚C (SSP5-8.5) we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2 ˚C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while we emphasize the timing of ice-shelf collapse around Antarctica, which is highly uncertain due to low understanding of the driving processes.

Josephine Anselin

and 3 more