Anna A. Fedorova

and 11 more

On Mars, saturation is the major factor constraining the vertical distribution of water vapor. Recent measurements of water and temperature profiles showed that water can be strongly supersaturated at and above the level where clouds form during aphelion and perihelion seasons. Since 2018, the near-infrared spectrometer (NIR) of the Atmospheric Chemistry Suite onboard the Trace Gas Orbiter has measured H2O and temperature profiles using solar occultation in the infrared from below 10 km to 100 km of altitude. Here we provide the first long-term monitoring of the water saturation state. The survey spans 2 Martian years from Ls=163° of MY34 to the Ls=180° of MY36. We found that water is often supersaturated above aerosol layers. In the aphelion season, water mixing ratio above 40 km in the mid-to-high latitudes was below 3 ppmv and yet is found to be supersaturated. Around perihelion, water is also supersaturated above 60 km with a mixing ratio of 30-50 ppmv. Stronger saturation is observed during the dusty season in MY35 compared to what was observed in MY34 during the Global Dust Storm and around perihelion. Saturation varied between evening and morning terminators in response to temperature modulation imparted by thermal tides. Although water vapor is more abundant in the evening, colder morning temperatures induce a daily peak of saturation. This dataset establishes a new paradigm for water vapor on Mars, revealing that supersaturation is nearly ubiquitous, particularly during the dust season, thereby promoting water escape on an annual average.

Anna A. Fedorova

and 14 more

Carbon monoxide is a non-condensable species of the Martian atmosphere produced by the photolysis of CO2. Its mixing ratio responds to the condensation and sublimation of CO2; from the polar caps, resulting in seasonal variations of the CO abundance. Since 2018, all three spectrometers of the Atmospheric Chemistry Suite (ACS) onboard the Trace Gas Orbiter have measured CO in infrared bands by solar occultation. Here we provide the first long-term monitoring of the CO vertical distribution at the altitude range from 0 to 80 km for 1.5 Martian years from Ls=163; of MY34 to the end of MY35. We obtained a mean CO volume mixing ratio of ~960 ppm at latitudes from 45S to 45N, mostly consistent with previous observations. We found a strong enrichment of CO near the surface at Ls=100-200; in high southern latitudes with a layer of 3000-4000 ppmv, corresponding to local depletion of CO2. At equinoxes we found an increase of mixing ratio above 50 km to 3000–4000 ppmv explained by the downwelling flux of the Hadley circulation on Mars, which drags the CO enriched air. The general circulation chemical model tends to overestimate the intensity of this process, bringing too much CO. The observed minimum of CO in the high and mid-latitudes southern summer atmosphere amounts to 700-750 ppmv, agreeing with nadir measurements. During the global dust storm of MY34, when the H2O abundance peaks, we see less CO than during the calm MY35, suggesting an impact of HOx chemistry on the CO abundance.