Matthew J. Rutala

and 3 more

We present the first large-scale statistical survey of the Jovian main emission (ME) to map auroral properties from their ionospheric locations out into the equatorial plane of the magnetosphere, where they are compared directly to in-situ spacecraft measurements. We use magnetosphere-ionosphere (MI) coupling theory to calculate currents from the auroral brightness as measured with the Hubble Space Telescope and from plasma flow speeds measured in-situ with the Galileo spacecraft. The effective Pedersen conductance of the ionosphere (\(\Sigma_P^*\)) remains a free parameter in this comparison. We first show that the field-aligned currents per radian of azimuth calculated from the auroral observations, found to be \(I_{||}=9.54^{+11.5}_{-6.35}\) MA rad-1 and \(I_{||}=10.64^{+11.1}_{-6.11}\) MA rad-1 in the north and south, respectively, are consistent with previous results. Then, we calculate the Pedersen conductance from the combined datasets, and find it ranges from \(0.02<\Sigma_P^*<2.26\) mho overall with averages of \(0.14^{+0.31}_{-0.08}\) mho in the north and \(0.14^{+0.26}_{-0.09}\) mho in the south. Taking the currents and effective Pedersen conductance together, we find that the average ME intensity and plasma flow speed in the middle magnetosphere (10-30 RJ) RJ) are broadly consistent with one another under MI coupling theory. We find evidence for peaks in the distribution of \(\Sigma_P^*\) near 7, 12, and 14 hours magnetic local time (MLT). This variation in Pedersen conductance with MLT may indicate the importance of conductance in modulating MLT- and local-time-asymmetries in the ME, including the apparent subcorotation of some auroral features within the ME.

Dale Michael Weigt

and 9 more

To help understand and determine the driver of jovian auroral X-rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalogue we explore dates from 18 December 2000 up to and including 8 September 2019. Using a numerical criterion, we characterize the typical and extreme behaviour of the concentrated NHS emissions across the catalogue. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X-ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼ 1.2 R. We use a flux equivalence mapping model to link this distinct region of X-ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre-dusk to pre-midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X-ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi-periodic oscillations (QPOs) in the NHS photons ranging from ∼ 2.3-min to 36.4-min, suggesting possible links with ultra-low frequency activity on the magnetopause boundary (e.g. dayside reconnection, Kelvin-Helmholtz instabilities).

Bertrand Bonfond

and 17 more

Chihiro Tao

and 12 more

Quasi-periodic variations of a few to several days are observed in the energetic plasma and magnetic dipolarization in Jupiter’s magnetosphere. Variation in the plasma mass flux related to Io’s volcanic activity is proposed as a candidate of the variety of the period. Using a long-term monitoring of Jupiter by the Earth-orbiting space telescope Hisaki, we analyzed the quasi-periodic variation seen in the auroral power integrated over the northern pole for 2014–2016, which included monitoring Io’s volcanically active period in 2015 and the solar wind near Jupiter during Juno’s approach in 2016. Quasi-periodic variation with periods of 0.8–8 days was detected. The difference between the periodicities during volcanically active and quiet periods is not significant. Our dataset suggests that a difference of period between this volcanically active and quiet conditions is below 1.25 days. This is consistent with the expected difference estimated from a proposed relationship based on a theoretical model applied to the plasma variation of this volcanic event. The periodicity does not show a clear correlation with the auroral power, central meridional longitude, or Io phase angle. The periodic variation is continuously observed in addition to the auroral modulation due to solar wind variation. Furthermore, Hisaki auroral data sometimes shows particularly intense auroral bursts of emissions lasting <10h. We find that these bursts coincide with peaks of the periodic variations. Moreover, the occurrence of these bursts increases during the volcanically active period. This auroral observation links parts of previous observations to give a global view of Jupiter’s magnetospheric dynamics.

Marissa F. Vogt

and 5 more

Hubble Space Telescope images of Jupiter’s UV aurora show that the main emission occasionally contracts or expands, shifting toward or away from the magnetic pole by several degrees in response to changes in the solar wind dynamic pressure and Io’s volcanic activity. When the auroral footprints of the Galilean satellites move with the main emission this indicates a change in the stretched field line configuration that shifts the ionospheric mapping of a given radial distance at the equator. However, in some cases, the main emission shifts independently from the satellite footprints, indicating that the variability stems from some other part of the corotation enforcement current system that produces Jupiter’s main auroral emissions. Here we analyze HST images from the Galileo era (1996-2003) and compare latitudinal shifts of the Ganymede footprint and the main auroral emission. We focus on images with overlapping Galileo measurements because concurrent measurements are available of the current sheet strength, which indicates the amount of field line stretching and can influence both the main emission and satellite footprints. We show that the Ganymede footprint and main auroral emission typically, but do not always, move together. Additionally, we find that the auroral shifts are only weakly linked to changes in the current sheet strength measured by Galileo. We discuss implications of the observed auroral shifts in terms of the magnetospheric mapping. Finally, we establish how the statistical reference main emission contours vary with CML and show that the dependence results from magnetospheric local time asymmetries.

Kamolporn Haewsantati

and 14 more

Since 2016, the Juno-UVS instrument has been taking spectral images of Jupiter’s auroras during its polar fly-bys. These observations provide a great opportunity to study Jupiter’s auroras in their full extent, including the nightside, which is inaccessible from Earth. We present a systematic analysis of features in Jupiter’s polar auroras called auroral bright spots observed during the first 25 Juno orbits. Bright spots were identified in 16 perijoves (PJ) out of 24 (there was no available data for perijove 2), in both the northern and southern hemispheres. The emitted power of the bright spots is time variable with peak power ranging from a few tens to a hundred of gigawatts. Moreover, we found that, for some perijoves, bright spots exhibit quasiperiodic behavior. The spots, within PJ4 and PJ16, each reappeared at almost the same system III position of their first appearance with periods of 28 and 22 minutes, respectively. This period is similar to that of quasiperiodic emissions previously identified in X-rays and various other observations. The bright spot position is in a specific region in the northern hemisphere in system III, but are scattered around the magnetic pole in the southern hemisphere, near the edge of the swirl region. Furthermore, our analysis shows that the bright spots can be seen at any local time, rather than being confined to the noon sector as previously thought based on biased observations. This suggests that the bright spots might not be firmly connected to the noon facing magnetospheric cusp processes.

Thomas K. Greathouse

and 14 more