Joseph Robinson

and 2 more

We examine the distribution of aerosol optical depth (AOD) across 27,707 northern hemisphere (NH) midlatitude cyclones for 2005-2018 using retrievals from the Moderate Resolution Spectroradiometer (MODIS) sensor on the Aqua satellite. Cyclone-centered composites show AOD enhancements of 20-45% relative to background conditions in the warm conveyor belt (WCB) airstream. Fine mode AOD (fAOD) accounts for 68% of this enhancement annually. Relative to background conditions, coarse mode AOD (cAOD) is enhanced by more than a factor of two near the center of the composite cyclone, co-located with high surface wind speeds. Within the WCB, MODIS AOD maximizes in spring, with a secondary maximum in summer. Cyclone-centered composites of AOD from the Modern Era Retrospective analysis for Research and Applications, version 2 Global Modeling Initiative (M2GMI) simulation reproduce the magnitude and seasonality of the MODIS AOD composites and enhancements. M2GMI simulations show that the AOD enhancement in the WCB is dominated by sulfate (37%) and organic aerosol (25%), with dust and sea salt each accounting for 15%. MODIS and M2GMI AOD are 60% larger in North Pacific WCBs compared to North Atlantic WCBs and show a strong relationship with anthropogenic pollution. We infer that NH midlatitude cyclones account for 355 Tg yr-1 of sea salt aerosol emissions annually, or 60% of the 30-80oN total. We find that deposition within WCBs is responsible for up to 35% of the total aerosol deposition over the NH ocean basins. Furthermore, the cloudy environment of WCBs leads to efficient secondary sulfate production.

Natalya Kramarova

and 7 more

In this study, we present evaluation of version 3 ozone products derived from the DSCOVR EPIC instrument. EPIC’s total and tropospheric ozone columns have been compared with correlative satellite and ground-based measurements at time scales from daily averages to monthly means. We found that the agreement improves if we only accept retrievals derived from the EPIC 317 nm triplet and limit solar zenith and satellite looking angles to 70°. With such filtering in place, the comparisons of EPIC total columns with correlative satellite and ground-based data show mean differences within ±5-7 DU (or 1.5-2.5%). The biases with OMI and OMPS NM tend to be mostly negative in the Southern Hemisphere (SH), while there are no clear latitudinal patterns in ground-based comparisons. Evaluation of the EPIC ozone time series at different ground-based stations with the correlative ground-based Brewer and Pandora instruments and ozonesondes demonstrated good consistency in capturing ozone variations at daily, weekly and monthly scales with a persistently high correlation (r2>0.9) for total and tropospheric columns. We examined the quality of EPIC tropospheric ozone columns by comparing with ozonesondes at 12 stations and found that differences in tropospheric column ozone are within ±2.5 DU (or ~±10%) after removing a constant 3 DU offset at all stations between EPIC and sondes. The analysis of the time series of zonally averaged EPIC tropospheric ozone revealed a statistically significant drop of ~2-4 DU (~5-10%) over the entire NH in spring and summer of 2020, which is partially related to the unprecedented Arctic stratospheric ozone losses in winter-spring 2019/2020 and reductions in ozone precursor pollutants due to the COVID-19 pandemic.

Scott Guzewich

and 8 more

Volcanic flood basalt eruptions have covered 1000s of km2 with basalt deposits up to kilometers thick. The massive size and extended duration result in enormous releases of climactically-relevant gases such as SO2 and CO2. However, it is still unknown precisely how flood basalt eruptions influence climate via eruption rates and cadence, height of the volcanic plumes, and relative degassing abundance of species like SO2. Once eruptions occur, the complex interplay of photochemistry, greenhouse gas warming, changes to the atmospheric circulation, and aerosol-cloud interactions can only be properly simulated with a comprehensive global climate model (GCM). We created an eruption scenario for the Goddard Chemistry Climate Model (GEOSCCM) that emits SO2 in the near-surface atmosphere constantly and four times per year an explosive eruption that emits much more SO2 in the upper troposphere/lower stratosphere. The eruption lasts for 4 years and emits 30 Gt of SO2 total. This corresponds to ~1/10th of what may have been emitted during the Wapshilla Ridge eruption phase of the Columbia River flood basalt eruption 15-17 Ma. We use a pre-industrial atmosphere and otherwise modern initial and boundary conditions. The massive flux of SO2 into the atmosphere is quickly converted to H2SO4 aerosols. Global area-weighted mean visible band sulfate aerosol optical depth reaches 220 near the end of the eruption, comparable to cumulonimbus clouds. This reduces the surface shortwave radiative flux by 85% and top-of-atmosphere outgoing longwave flux by 70%. Contrary to our expectations, we find that the climate warms during and immediately following the eruption after a very brief initial cooling. Global mean surface temperature peaks 3-4 years after the eruption ends with a +6 K anomaly relative to a baseline simulation without the eruption. Post-eruption regional temperatures, particularly near-equatorial continental areas, see drastic rises of summertime temperatures with monthly mean temperatures equaling or exceeding 40°C. These temperature responses are radiative- and circulation-driven. The eruption warms and raises the tropical tropopause, allowing a massive flux of water vapor into the stratosphere. Stratospheric water vapor, usually ~3 parts per million reaches 1-2 parts per thousand.