Nienke Brinkman

and 23 more

InSight’s seismometer package SEIS was placed on the surface of Mars at about 1.2 m distance from the thermal properties instrument HP3 that includes a self-hammering probe. Recording the hammering noise with SEIS provided a unique opportunity to estimate the seismic wave velocities of the shallow regolith at the landing site. However, the value of studying the seismic signals of the hammering was only realised after critical hardware decisions were already taken. Furthermore, the design and nominal operation of both SEIS and HP3 are non-ideal for such high-resolution seismic measurements. Therefore, a series of adaptations had to be implemented to operate the self-hammering probe as a controlled seismic source and SEIS as a high-frequency seismic receiver including the design of a high-precision timing and an innovative high-frequency sampling workflow. By interpreting the first-arriving seismic waves as a P-wave and identifying first-arriving S-waves by polarisation analysis, we determined effective P- and S-wave velocities of vP = 119+45-21 m/s and vS = 63+11-7 m/s, respectively, from around 2,000 hammer stroke recordings. These velocities likely represent bulk estimates for the uppermost several 10’s of cm of regolith. An analysis of the P-wave incidence angles provided an independent vP/vS ratio estimate of 1.84+0.89-0.35 that compares well with the traveltime based estimate of 1.86+0.42-0.25. The low seismic velocities are consistent with those observed for low-density unconsolidated sands and are in agreement with estimates obtained by other methods.

Jiaqi Li

and 11 more

Savas Ceylan

and 26 more

The InSight mission (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) has been collecting high-quality seismic data from Mars since February 2019, shortly after its landing. The Marsquake Service (MQS) is the team responsible for the prompt review of all seismic data recorded by the InSight’s seismometer (SEIS), marsquake event detection, and curating seismicity catalogues. Until sol 1011 (end of September 2021), MQS have identified 951 marsquakes that we interpret to occur at regional and teleseismic distances, and 1062 very short duration events that are most likely generated by local thermal stresses nearby the SEIS package. Here, we summarize the seismic data collected until sol 1011, version 9 of the InSight seismicity catalogue. We focus on the significant seismicity that occurred after sol 478, the end date of version 3, the last catalogue described in a dedicated paper. In this new period, almost a full Martian year of new data has been collected, allowing us to observe seasonal variations in seismicity that are largely driven by strong changes in atmospheric noise that couples into the seismic signal. Further, the largest, closest and most distant events have been identified, and the number of fully located events has increased from 3 to 7. In addition to the new seismicity, we document improvements in the catalogue that include the adoption of InSight-calibrated Martian models and magnitude scales, the inclusion of additional seismic body-wave phases, and first focal mechanism solutions for three of the regional marsquakes at distances ~30 degrees.

Eleonore Stutzmann

and 24 more

Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the seismometers of the InSight lander. The noise on Mars is 500 times lower than on Earth at night and it increases during the day. We analyze its polarization as a function of time and frequency in the band 0.03-1Hz. We use the degree of polarization to extract signals with stable polarization whatever their amplitude. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane with clockwise and anti-clockwise motion at low frequency (LF). At high frequency (HF), the ellipse is in the vertical plane and the major axis is tilted with respect to the vertical. Whereas polarization azimuths are different in the two frequency bands, they are both varying as a function of local time and season. They are also correlated with wind direction, particularly during the day. We investigate possible aseismic and seismic origin of the polarized signals. Lander or tether noise are discarded. Pressure fluctuation transported by environmmental wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission in some particular case. Finally, in the evening when the wind is low, the measured polarized signals seems to correspond to a diffuse seismic wavefield that would be the Mars microseismic noise.

Martin Schimmel

and 16 more

Mars is the first extraterrestrial planet with seismometers (SEIS) deployed directly on its surface in the framework of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission. The lack of strong Marsquakes, however, strengthens the need of seismic noise studies to additionally constrain the Martian structure. Seismic noise autocorrelations of single-station recordings permit the determination of the zero-offset reflection response underneath SEIS. We present a new autocorrelation study which employs state-of-the-art approaches to determine a robust reflection response by avoiding bias from aseismic signals which are recorded together with seismic waves due to unfavorable deployment and environmental conditions. Data selection and segmentation is performed in a data-adaptive manner which takes the data root-mean-square amplitude variability into account. We further use the amplitude-unbiased phase cross-correlation and work in the 1.2-8.9 Hz frequency band. The main target are crustal scale reflections, their robustness and convergence. The strongest signal appears at 10.6 s, and, if interpreted as P-wave reflection, would correspond to a discontinuity at about 24 km depth. This signal is a likely candidate for a reflection from the base of the Martian crust due to its strength, polarity, and stability. Additionally we identify, among the stable signals, a signal at about 6.85 s that can be interpreted as a P-wave reflection from the mid-crust at about 9.5 km depth.

Mélanie Drilleau

and 11 more

We present inversions for the structure of Mars using the first Martian seismic record collected by the InSight lander. We identified and used arrival times of direct, multiples, and depth phases of body waves, for seventeen marsquakes to constrain the quake locations and the one-dimensional average interior structure of Mars. We found the marsquake hypocenters to be shallower than 40 km depth, most of them being located in the Cerberus Fossae graben system, which could be a source of marsquakes. Our results show a significant velocity jump between the upper and the lower part of the crust, interpreted as the transition between intrusive and extrusive rocks. The lower crust makes up a significant fraction of the crust, with seismic velocities compatible with those of mafic to ultramafic rocks. Additional constraints on the crustal thickness from previous seismic analyses, combined with modeling relying on gravity and topography measurements, yield constraints on the present-day thermochemical state of Mars and on its long-term history. Our most constrained inversion results indicate a present-day surface heat flux of 22±1 mW/m2, a relatively hot mantle (potential temperature: 1740±90 K) and a thick lithosphere (540±120 km), associated with a lithospheric thermal gradient of 1.9±0.3 K/km. These results are compatible with recent seismic studies using a reduced data set and different inversions approaches, confirming that Mars’ mantle was initially relatively cold (1780±50 K) compared to its present-day state, and that its crust contains 10-12 times more heat-producing elements than the primitive mantle.

Matthew O Fillingim

and 11 more

David Sollberger

and 19 more

The NASA InSight lander successfully placed a seismometer on the surface of Mars. Alongside, a hammering device was deployed that penetrated into the ground to attempt the first measurements of the planetary heat flow of Mars. The hammering of the heat probe generated repeated seismic signals that were registered by the seismometer and can potentially be used to image the shallow subsurface just below the lander. However, the broad frequency content of the seismic signals generated by the hammering extends beyond the Nyquist frequency governed by the seismometer's sampling rate of 100 samples per second. Here, we propose an algorithm to reconstruct the seismic signals beyond the classical sampling limits. We exploit the structure in the data due to thousands of repeated, only gradually varying hammering signals as the heat probe slowly penetrates into the ground. In addition, we make use of the fact that repeated hammering signals are sub-sampled differently due to the unsynchronised timing between the hammer strikes and the seismometer recordings. This allows us to reconstruct signals beyond the classical Nyquist frequency limit by enforcing a sparsity constraint on the signal in a modified Radon transform domain. Using both synthetic data and actual data recorded on Mars, we show how the proposed algorithm can be used to reconstruct the high-frequency hammering signal at very high resolution. In this way, we were able to constrain the seismic velocity of the top first meter of the Martian regolith.