Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high resolution using three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low resolution global inventories and the high resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories.

Joshua Paul DiGangi

and 11 more

We present observations of local enhancements in carbon dioxide (CO2) from local emissions sources over three eastern US regions during four deployments of the Atmospheric Carbon Transport-America (ACT-America) campaign between summer 2016 and spring 2018. Local CO2 emissions were characterized by carbon monoxide (CO) to CO2 enhancement ratios (i.e. ΔCO/ΔCO2) in airmass mixing observed during aircraft transects within the atmospheric boundary layer. By analyzing regional-scale variability of CO2 enhancements as a function of ΔCO/ΔCO2 enhancement ratios, observed relative contributions to CO2 emissions were contrasted between different combustion regimes across regions and seasons. Ninety percent of observed summer combustion in all regions was attributed to high efficiency fossil fuel (FF) combustion (ΔCO/ΔCO2 < 0.5%). In other seasons, regional contributions increased from less efficient forms of FF combustion (ΔCO/ΔCO2 0.5-2%) to as much as 60% of observed combustion. CO2 emission contributions attributed to biomass burning (BB) (ΔCO/ΔCO2 > 4%) were negligible during summer and fall in all regions, but climbed to 10-12% of observed combustion in the South during winter and spring. Vulcan v3 CO2 2015 emission analysis showed increases in residential and commercial sectors seasonally matching increases in less efficient FF combustion, but could not explain regional trends. WRF-Chem modeling, driven by CarbonTracker CO2 fire emissions, matched observed winter and spring BB contributions, but conflictingly predicted similar levels of BB during fall. Satellite fire data from MODIS and VIIRS suggested higher spatial resolution fire data might improve modeled BB emissions.

Yaxing Wei

and 49 more

The ACT-America project is a NASA Earth Venture Suborbital-2 mission designed to study the transport and fluxes of greenhouse gases. The open and freely available ACT-America datasets provide airborne in-situ measurements of atmospheric carbon dioxide, methane, trace gases, aerosols, clouds, and meteorological properties, airborne remote sensing measurements of aerosol backscatter, atmospheric boundary layer height and columnar content of atmospheric carbon dioxide, tower-based measurements, and modeled atmospheric mole fractions and regional carbon fluxes of greenhouse gases over the Central and Eastern United States. We conducted 121 research flights during five campaigns in four seasons during 2016-2019 over three regions of the US (Mid-Atlantic, Midwest and South) using two NASA research aircraft (B-200 and C-130). We performed three flight patterns (fair weather, frontal crossings, and OCO-2 underflights) and collected more than 1,140 hours of airborne measurements via level-leg flights in the atmospheric boundary layer, lower, and upper free troposphere and vertical profiles spanning these altitudes. We also merged various airborne in-situ measurements onto a common standard sampling interval, which brings coherence to the data, creates geolocated data products, and makes it much easier for the users to perform holistic analysis of the ACT-America data products. Here, we report on detailed information of datasets collected, and the workflow for datasets including storage and processing of the quality controlled and quality assured harmonized observations, and their archival and formatting for users. Finally, we provide some important information on the dissemination of data products including metadata and highlights of applications of datasets for future investigations.