Alexandra Ruth Fogg

and 8 more

Corentin Kenelm Louis

and 15 more

Dale Michael Weigt

and 9 more

To help understand and determine the driver of jovian auroral X-rays, we present the first statistical study to focus on the morphology and dynamics of the jovian northern hot spot (NHS) using Chandra data. The catalogue we explore dates from 18 December 2000 up to and including 8 September 2019. Using a numerical criterion, we characterize the typical and extreme behaviour of the concentrated NHS emissions across the catalogue. The mean power of the NHS is found to be 1.91 GW with a maximum brightness of 2.02 Rayleighs (R), representing by far the brightest parts of the jovian X-ray spectrum. We report a statistically significant region of emissions at the NHS center which is always present, the averaged hot spot nucleus (AHSNuc), with mean power of 0.57 GW and inferred average brightness of ∼ 1.2 R. We use a flux equivalence mapping model to link this distinct region of X-ray output to a likely source location and find that the majority of mappable NHS photons emanate from the pre-dusk to pre-midnight sector, coincident with the dusk flank boundary. A smaller cluster maps to the noon magnetopause boundary, dominated by the AHSNuc, suggesting that there may be multiple drivers of X-ray emissions. On application of timing analysis techniques (Rayleigh, Monte Carlo, Jackknife), we identify several instances of statistically significant quasi-periodic oscillations (QPOs) in the NHS photons ranging from ∼ 2.3-min to 36.4-min, suggesting possible links with ultra-low frequency activity on the magnetopause boundary (e.g. dayside reconnection, Kelvin-Helmholtz instabilities).

James E Waters

and 6 more

Auroral Kilometric Radiation (AKR) is radio emission that originates in particle acceleration regions along magnetic field lines, coinciding with discrete auroral arcs. Found in both hemispheres, an increase in the amplitude of a particular AKR source denotes the strengthening of parallel electric fields in the auroral zone, while the emission frequency gives insight into source region morphology. AKR viewing geometry is complex due to the confinement of the source regions to nightside local times and the anisotropy of the beaming pattern, so observations are highly dependent on spacecraft viewing position. We present a novel, empirical technique that selects AKR emission from remote radio observations made with the spin-axis aligned antenna of the Wind/WAVES instrument, based on the rapidly varying amplitude of AKR across spacecraft spin timescales. This selection is applied to 30 days of data in 1999, during which the Cassini spacecraft flew close to Earth and recorded AKR for the majority of the period, while the Wind spacecraft completed close to two, precessing petal orbits. We examine the flux density and integrated power, which gives an occurrence distribution with spacecraft local time that is typical of AKR, with an increase in power of around $10^{3}$ Wsr$^{-1}$ between dayside and nightside observations. We also find a statistically significant ($p < 10^{-5}$), previously observed diurnal modulation of the AKR integrated power for the period, further verifying the empirical selection of AKR and showing the promise of its application to larger subsets of Wind/WAVES observations.

Tadhg Garton

and 2 more

Magnetic reconnection is a fundamental physical process in planetary magnetospheres, in which plasma can be exchanged between the solar wind and a planetary magnetosphere, and material can be disconnected and ultimately lost from a magnetosphere. Magnetic reconnection in a planetary magnetotail can result in the release of plasmoids downtail and dipolarizations planetward of an x-line. The signatures of these products include characteristic deflections in the north-south component of the magnetic field which can be detected by in-situ spacecraft. These signatures have been identified by eye, semi-automated algorithms, and recently machine learning methods. Here, we apply statistical analysis to the most thorough catalogue of Kronian magnetospheric reconnection signatures created through machine learning methods to improve understanding of magnetospheric evolution. This research concludes that no quasi-steady position of the magnetotail x-line exists within 70 R S. This research introduces prediction equations to estimate the distribution of duration of plasmoid passage over the spacecraft (N = 300∆t −1.3 , bin width = 1 min) and north-south field deflection (N = 52∆B −2.1 θ , bin width = 0.25 nT) expected to be identified by an orbiting spacecraft across a year of observations. Furthermore, this research finds a local time asymmetry for reconnection identifications, with a preference for dusk-side over dawn-side. This may indicate a preference for Vasyliunas style reconnection over Dungey style for Saturn. Finally, through these distributions, the reconnection rate of Saturn’s magnetotail can be estimated as 3.22 reconnection events per day, with a resulting maximum mass loss from plasmoids of 34.4 kg s −1 on average, which is comparable with the magnetospheric mass loading from Enceladus (8-250 kg s −1).
We present a statistical study of Jupiter’s disk X-ray emissions using 19 years of Chandra X-Ray Observatory (CXO) observations. Previous work has suggested that these emissions are consistent with solar X-rays elastically scattered from Jupiter’s upper atmosphere. We showcase a new Pulse Invariant (PI) filtering method that minimises instrumental effects which may produce unphysical trends in photon counts across the nearly-two-decade span of the observations. We compare the CXO results with solar X-ray flux data from the Geostationary Operational Environmental Satellites (GOES) X-ray Sensor (XRS) for the wavelength band 1-8 Å (long channel), to quantify the correlation between solar activity and jovian disk counts. We find a statistically significant Pearson’s Correlation Coefficient (PCC) of 0.9, which confirms that emitted jovian disk X-rays are predominantly governed by solar activity. We also utilise the high spatial resolution of the High Resolution Camera Instrument (HRC-I) on board the CXO to map the disk photons to their positions on Jupiter’s surface. Voronoi tessellation diagrams were constructed with the JRM09 (Juno Reference Model through Perijove 9) internal field model overlaid to identify any spatial preference of equatorial photons. After accounting for area and scattering across the curved surface of the planet, we find a preference of jovian disk emission at 2-3.5 Gauss surface magnetic field strength. This suggests that a portion of the disk X-rays may be linked to processes other than solar scattering: the spatial preference associated with magnetic field strength may imply increased precipitation from the radiation belts, as previously postulated.