Ella M. K. Gilbert

and 4 more

Quantifying the relative importance of the atmospheric drivers of surface melting on the Larsen C ice shelf is critical in the context of recent and future climate change. Here, we present analysis of a new multi-decadal, high-resolution model hindcast using the Met Office Unified Model (MetUM), described in part 1 of this study. We evaluate the contribution of various atmospheric conditions in order to identify the most significant causes of melting over the recent past. We find the primary driver of surface melting on Larsen C is solar radiation. Foehn events are the second most important contributor to surface melting, especially in non-summer seasons when relatively less solar radiation is received at the surface of the ice shelf. Thirdly, cloud influences surface melting via its impact on the surface energy balance (SEB); when the surface temperature is warm enough, cloud can initiate or prolong periods of melting. Lastly, large-scale circulation patterns such as the Southern Annular Mode (SAM), El Niño Southern Oscillation (ENSO) and Amundsen Sea Low (ASL) control surface melting on Larsen C by influencing the local meteorological conditions and SEB. These drivers of melting interact and overlap, for example, the SAM influences the frequency of foehn, which are commonly associated with leeside cloud clearances and sunnier conditions. Ultimately, these drivers matter because sustained surface melting on Larsen C could destabilise the ice shelf via hydrofracturing, which would have consequences for the fate of the ice shelf and sea levels worldwide.

Andrew Orr

and 49 more

River systems originating from the Upper Indus Basin (UIB) are dominated by runoff from snow and glacier melt and summer monsoonal rainfall. These water resources are highly stressed as huge populations of people living in this region depend on them, including for agriculture, domestic use, and energy production. Projections suggest that the UIB region will be affected by considerable (yet poorly quantified) changes to the seasonality and composition of runoff in the future, which are likely to have considerable impacts on these supplies. Given how directly and indirectly communities and ecosystems are dependent on these resources and the growing pressure on them due to ever-increasing demands, the impacts of climate change pose considerable adaptation challenges. The strong linkages between hydroclimate, cryosphere, water resources, and human activities within the UIB suggest that a multi- and inter-disciplinary research approach integrating the social and natural/environmental sciences is critical for successful adaptation to ongoing and future hydrological and climate change. Here we use a horizon scanning technique to identify the Top 100 questions related to the most pressing knowledge gaps and research priorities in social and natural sciences on climate change and water in the UIB. These questions are on the margins of current thinking and investigation and are clustered into 14 themes, covering three overarching topics of ‘governance, policy, and sustainable solutions’, ‘socioeconomic processes and livelihoods’, and ‘integrated Earth System processes’. Raising awareness of these cutting-edge knowledge gaps and opportunities will hopefully encourage researchers, funding bodies, practitioners, and policy makers to address them.

Ella M. K. Gilbert

and 4 more