The hydroclimatology of Northern South America responds to strongly-coupled dynamics of oceanic and terrestrial surface-atmosphere exchange, as moisture evaporated from these sources interact to produce continental rainfall. However, the relative contributions of these two source types through the annual cycle have been described only in modeling studies, with no observational tools used to corroborate these predictions. The use of isotopic techniques to study moisture sources has been common in assessing changes in the water cycle and in climate dynamics, as isotopes allow tracking the connection between evaporation, transpiration, and precipitation, as well as the influence of large scale hydroclimatic phenomena, such as the seasonal Inter Tropical Convergence Zone migration. We characterize the isotopic composition of moisture sources becoming precipitation in the Andes and Caribbean regions of Colombia, using stable isotopes data (δ18O, δ2H) from the Global Network of Isotopes in Precipitation (1971-2016) and contrasting it with moisture trajectory tracking from the FLEXPART model, using input from ERA-Interim reanalysis to compute the relative contribution of oceanic and terrestrial sources through the annual cycle. Our results indicate that most precipitation in the region comes from terrestrial sources including recycling (>30 % for all months), Orinoco (up to 28 % monthly for April), and the northern Amazon (up to 17 % monthly for June, July, and August); followed by oceanic sources including the Tropical South Pacific (up to 30 % monthly in October, November, December) and Tropical North Atlantic (up to 30 % monthly for January). These outcomes highlight the utility of combining stable isotopes in precipitation and modeling techniques to discriminate terrestrial and oceanic sources of precipitation. Further, our results highlight the need to assess the hydrological consequences of land cover change in South America, particularly in a country like Colombia where water, food and energy security all depend directly on precipitation. .