Paul D Bates

and 28 more

This paper reports a new and significantly enhanced analysis of US flood hazard at 30m spatial resolution. Specific improvements include updated hydrography data, new methods to determine channel depth, more rigorous flood frequency analysis, output downscaling to property tract level and inclusion of the impact of local interventions in the flooding system. For the first time we consider pluvial, fluvial and coastal flood hazards within the same framework and provide projections for both current (rather than historic average) conditions and for future time periods centred on 2035 and 2050 under the RCP4.5 emissions pathway. Validation against high quality local models and the entire catalogue of FEMA 1% annual probability flood maps yielded Critical Success Index values in the range 0.69-0.82. Significant improvements over a previous pluvial/fluvial model version are shown for high frequency events and coastal zones, along with minor improvements in areas where model performance was already good. The result is the first comprehensive and consistent national scale analysis of flood hazard for the conterminous US for both current and future conditions. Even though we consider a stabilization emissions scenario and a near future time horizon we project clear patterns of changing flood hazard (-3.8 to +16% changes in 100yr inundated area at 1° scale), that are significant when considered as a proportion of the land area where human use is possible or in terms of the currently protected land area where the standard of flood defence protection may become compromised by this time.

Melike Kiraz

and 2 more

The analysis of large samples of hydrologic catchments is regularly used to gain understanding of hydrologic variability and controlling processes. Several studies have pointed towards the problem that available catchment descriptors (such as mean topographic slope or average subsurface properties) are insufficient to capture hydrologically relevant properties. Here, we test the assumption that catchment location, i.e. the relative properties of catchments in relation to their surrounding neighbours, can provide additional information to reduce this problem. We test this idea in the context of Great Britain for a widely discussed problem, that of catchment water balance errors due to subsurface losses. We test three hypotheses while considering different locational aspects (1) location to coast, (2) location next a relevant neighbour and (3) location within the drainage basin, utilizing only basic and widely available geological and topographical information. We find that subsurface losses from catchments with a highly permeable geology connection to the coast are in order of 20% water balance error. We define a simple topographic-geologic index that is able to partially explain water balance issues between neighbours of highly permeable catchments. The results imply that location, geology and topography combine to define the differences of water balances of UK catchments compared to what we would expect from their climatic setting alone. The simple index defined here can easily be derived globally and tested regarding its wider applicability.