Joseph H. Ammatelli

and 7 more

Eric Roden

and 7 more

This study deals with the riverbed of the Columbia river in the vicinity of the Hanford 300 Area study site in eastern Washington, where fluctuations in river stage take place both naturally (i.e. seasonally) and in conjunction with hydroelectric power dam operations. These fluctuations create conditions conducive to the influx and transport of fine-grained POM (a biological colloid originating from the river water and/or in situ periphyton production), within near-surface riverbed sediments. Although a great deal is known about dissolved organic matter (DOM) transport and metabolism in hyporheic zone sediments, there is a paucity of quantitative information on POM dynamics and its influence on hyporheic zone biogeochemistry (e.g. dissolved oxygen dynamics). We have developed a hydrobiogeochemical model capable of simulating the transport and metabolism of POM and its impact on dissolved oxygen (DO) distribution within the riverbed as influenced by periodic changes in river stage and fluid flow rate and direction. The model was employed as a tool to interpret the results of in situ measurements of POM intrusion into the riverbed made using “POM traps” emplaced within the upper 20 cm of the riverbed, as well as real-time in situ dissolved oxygen concentrations determined with a novel optical sensor buried directly in the riverbed at 20 cm depth. The simulations reproduced the accumulation of fresh POM within the upper few 5 cm of the riverbed observed in field POM trap deployments. Once sufficient surface POM accumulation takes place, an underlying zone of DO depletion develops as a consequence of variation in the rate of fluid exchange and POM/DOM degradation. The model predicted cyclic, hydrologically-driven variations in near-surface DO that are consistent with the results of the in situ DO probe deployments together with parallel measurements of fluid conductivity and hydrologic pressure. Our results suggest a complex interplay between fluid flow rate/direction and DO distribution that has important implication for riverbed biogeochemical dynamics at a variety of scales, as influenced by hydrological variability as well as the relative intensity of POM input and the availability of oxygen and other electron acceptors for microbial metabolism.

Jingyi Huang

and 8 more

Soil water is essential for maintaining global food security and for understanding hydrological, meteorological, and ecosystem processes under climate change. Successful monitoring and forecasting of soil water dynamics at high spatio-temporal resolutions globally are hampered by the heterogeneity of soil hydraulic properties in space and complex interactions between water and the environmental variables that control it. Current soil water monitoring schemes via station networks are sparsely distributed while remote sensing satellite soil moisture maps have a very coarse spatial resolution. In this study, an empirical surface soil moisture (SSM) model was established via data fusion of remote sensing (Sentinel-1 and Soil Moisture Active and Passive Mission - SMAP) and land surface parameters (e.g. soil texture, terrain) using a quantile random forest (QRF) algorithm. The model had a spatial resolution of 100 m and performed moderately well across the globe under cropland, grassland, savanna, barren, and forest soils (R = 0.53, RMSE = 0.08 m m). SSM was retrieved and mapped at 100 m every 6-12 days in selected irrigated cropland and rainfed grassland in the OZNET network, Australia. It was concluded that the high-resolution SSM maps can be used to monitor soil water content at the field scale for irrigation management. The SSM model is an additive and adaptable model, which can be further improved by including soil moisture network measurements at the field scale. Further research is required to improve the temporal resolution of the model and map soil water content within the root zone.