Arjuna James

and 10 more

Hubble Space Telescope Wide-Field Camera 3 (HST/WFC3) observations spanning 2015 to 2021 confirm a brightening of Uranus’ north polar hood feature with time. The vertical aerosol model of Irwin et al. (2023) (IRW23), consisting of a deep haze layer based at ~5 bar, a 1 - 2 bar haze layer, and an extended haze rising up from the 1 - 2 bar layer, was applied to retrievals on HST Space Telescope Imaging Spectrograph (HST/STIS) observations (Sromovsky et al., 2014, 2019} revealing a reduction in cloud-top CH4 by an average of 0.19 {plus minus} 0.03% between 40 - 80{degree sign}N between 2012 and 2015. A combination of latitudinal retrievals on the HST/WFC3 & HST/STIS datasets, again employing the IRW23 model, reveal a temporal thickening of the 1 - 2 bar haze layer to be the main cause of the polar hood brightening, finding an average increase of 1.09 {plus minus} 0.08 at 0.8 μm north of ~45{degree sign}N, concurrent with a decrease in the imaginary refractive index spectrum of the 1 - 2 bar haze layer north of ~40{degree sign}N and longwards of ~0.7 μm, and between 60{degree sign}N and 80{degree sign}N at ~0.5 μm. Small contributions to the brightening were found from a thickening of the deep aerosol layer, with an average increase in integrated opacity of 0.6 {plus minus} 0.1 north of 45{degree sign}N between 2012 and 2015, and from the aforementioned decrease in cloud-top CH4 abundance. Our results are consistent with the slowing of a meridional circulation, exhibiting strong subsidence at the poles.

Kevin Olsen

and 15 more

The mid-infrared channel of the Atmospheric Chemistry Suite (ACS MIR) onboard the ExoMars Trace Gas Orbiter is capable of observing the infrared absorption of ozone (O3) in the atmosphere of Mars. During solar occulations, the 003-000 band (3000-3060 cm-1) is observed with spectral sampling of ˜0.045 cm-1. Around the equinoxes in both hemispheres and over the southern winters, we regularly observe around 200-500 ppbv of O3 below 30 km. The warm southern summers, near perihelion, produce enough atmospheric moisture that O3 is not detectable at all, and observations are rare even at high northern latitudes. During the northern summers, water vapour is restricted to below 10 km, and an O3 layer (100-300 ppbv) is visible between 20-30 km. At this same time, the aphelion cloud belt forms, condensing water vapour and allowing O3 to build up between 30-40 km. A comparison to vertical profiles of water vapour and temperature in each season reveals that water vapour abundance is controlled by atmospheric temperature, and H2O and O3 are anti-correlated as expected. When the atmosphere cools, over time or over altitude, water vapour condenses (observed as a reduction in its mixing ratio) and the production of odd hydrogen species is reduced, which allows O3 to build up. Conversely, warmer temperatures lead to water vapour enhancements and ozone loss. The LMD Mars Global Climate Model is able to reproduce vertical structure and seasonal changes of temperature, H2O, and O3 that we observe. However, the observed O3 abundance is larger by a factor of 2-6, indicating important differences in the rate of odd-hydrogen photochemistry.