loading page

Designing a fully-tunable and versatile TKE-l turbulence parameterization for atmospheric models
  • +12
  • Étienne VIGNON,
  • Khadija ARJDAL,
  • Frederique Cheruy,
  • Maëlle coulondecorzens,
  • Clément Dehondt,
  • Thomas Dubos,
  • Sébastien Fromang,
  • Frédéric Hourdin,
  • Lucas Lange,
  • Lea Raillard,
  • Gwendal Rivière,
  • Romain Roehrig,
  • Adriana Sima,
  • Aymeric Spiga,
  • Pierre Tiengou
Étienne VIGNON

Corresponding Author:[email protected]

Author Profile
Khadija ARJDAL
Mohammed VI Polytechnique university
Author Profile
Frederique Cheruy
French National Centre for Scientific Research (CNRS)
Author Profile
Maëlle coulondecorzens
Laboratoire de Météorologie Dynamique
Author Profile
Clément Dehondt
Author Profile
Thomas Dubos
Author Profile
Sébastien Fromang
Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Departement d'Astrophysique
Author Profile
Frédéric Hourdin
Author Profile
Lucas Lange
Laboratoire de Météorologie Dynamique,Institut Pierre-Simon Laplace (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), École Polytechni
Author Profile
Lea Raillard
Laboratoire de Météorologie Dynamique
Author Profile
Gwendal Rivière
Laboratoire de Météorologie Dynamique
Author Profile
Romain Roehrig
CNRM, Université de Toulouse, Météo-France, CNRS
Author Profile
Adriana Sima
Laboratoire de Météorologie Dynamique, Sorbonne Université / CNRS / École Normale Supérieure
Author Profile
Aymeric Spiga
Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace (LMD/IPSL),CNRS,Sorbonne Université
Author Profile
Pierre Tiengou
Author Profile


This study presents the development of a TKE-l parameterization of the diffusion coefficients for the representation of turbulent diffusion in neutral and stable conditions in large-scale atmospheric models. The parameterization has been carefully designed to be completely tunable in the sense that all adjustable parameters have been clearly identified and their number minimized as much as possible to help the calibration and to thoroughly assess the parametric sensitivity. We choose a mixing length formulation that depends on both static stability and wind shear to cover the different regimes of stable boundary layers. We follow a heuristic approach for expressing the stability functions and turbulent Prandlt number in order to guarantee the versatility of the scheme and its applicability for planetary atmospheres composed of an ideal and perfect gas such as that of Earth and Mars. Particular attention has also been paid to the numerical stability at typical time steps used in General Circulation Models. Test, parametric sensitivity assessment and preliminary tuning are performed on single-column idealized simulations of the weakly stable boundary layer. The robustness and versatility of the scheme are also assessed through its implementation in the LMDZ General Circulation Model and the Mars Planetary Climate Model and by running simulations of the Antarctic and Martian nocturnal boundary layers.
23 Apr 2024Submitted to ESS Open Archive
26 Apr 2024Published in ESS Open Archive