loading page

Modeling the economic and environmental impacts of land scarcity under deep uncertainty
  • +4
  • Flannery Dolan,
  • Jonathan R. Lamontagne,
  • Katherine Calvin,
  • Abigail C Snyder,
  • Kanishka Narayan,
  • Alan V. Di Vittorio,
  • Chris R Vernon
Flannery Dolan
Tufts University

Corresponding Author:[email protected]

Author Profile
Jonathan R. Lamontagne
Tufts University
Author Profile
Katherine Calvin
Pacific Northwest National Laboratory
Author Profile
Abigail C Snyder
Pacific Northwest National Laboratory
Author Profile
Kanishka Narayan
Pacific Northwest National Laboratory
Author Profile
Alan V. Di Vittorio
Lawrence Berkeley National Laboratory
Author Profile
Chris R Vernon
Pacific Northwest National Laboratory
Author Profile

Abstract

Land scarcity is increasing over time, driven by complex multi-sector dynamics. The impacts of land scarcity on the economy and environment are multi-faceted and regional, so any action to convert land will contain inherent tradeoffs. These impacts are complicated by the deeply uncertain evolution of the various sectors influencing land scarcity. A need therefore exists to provide multi-metric and multi-sector assessments that are robust to myriad uncertainties. Land conservation effectively limits the supply of productive land, while biofuel consumption increases the demand and competition for that land, and how these dynamics individually and jointly propagate to economic and environmental impacts is an important open question. To address this, we adopt the Global Change Analysis Model (GCAM) that has representations of various important sectors including the climate, land-use economy, energy systems, agriculture, and water resources. Scenarios of increased land demand (from biofuels) and decreased land supply (from conservation) under various socioeconomic pathways drawn from the SSPs were simulated using GCAM. We find that while biofuel consumption and land conservation reduce carbon emissions, this comes at the cost of higher food prices, reduced crop production, and increased water withdrawals. Additionally, some regions experience these tradeoffs more severely than others and are more heavily impacted from the same biofuel mandate or by an additional percent of protected land. These and other findings highlight the importance of multi-sector modeling frameworks that capture many cross-sector linkages, and acknowledge the important uncertainties confronting the human-Earth system when making any analysis of the land scarcity impacts.
Feb 2022Published in Earth's Future volume 10 issue 2. 10.1029/2021EF002466